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ABSTRACT
Objective To create annotated clinical narratives with
layers of syntactic and semantic labels to facilitate
advances in clinical natural language processing (NLP).
To develop NLP algorithms and open source components.
Methods Manual annotation of a clinical narrative
corpus of 127 606 tokens following the Treebank schema
for syntactic information, PropBank schema for
predicate-argument structures, and the Unified Medical
Language System (UMLS) schema for semantic
information. NLP components were developed.
Results The final corpus consists of 13 091 sentences
containing 1772 distinct predicate lemmas. Of the 766
newly created PropBank frames, 74 are verbs. There are
28 539 named entity (NE) annotations spread over 15
UMLS semantic groups, one UMLS semantic type, and the
Person semantic category. The most frequent annotations
belong to the UMLS semantic groups of Procedures
(15.71%), Disorders (14.74%), Concepts and Ideas
(15.10%), Anatomy (12.80%), Chemicals and Drugs
(7.49%), and the UMLS semantic type of Sign or
Symptom (12.46%). Inter-annotator agreement results:
Treebank (0.926), PropBank (0.891–0.931), NE
(0.697–0.750). The part-of-speech tagger, constituency
parser, dependency parser, and semantic role labeler are
built from the corpus and released open source. A
significant limitation uncovered by this project is the need
for the NLP community to develop a widely agreed-upon
schema for the annotation of clinical concepts and their
relations.
Conclusions This project takes a foundational step
towards bringing the field of clinical NLP up to par with
NLP in the general domain. The corpus creation and NLP
components provide a resource for research and
application development that would have been previously
impossible.

INTRODUCTION
With hospitals and governments around the world
working to promote and implement widespread
use of electronic medical records, the corpus of
generated-at-the-point-of-care free-text to be pro-
cessed for relevant phenotypic information
continues to grow. Although some types of notes
(eg, radiology or pathology reports) are often for-
mulaic in nature, others (eg, clinical notes (CN))
afford doctors the freedom to create medical docu-
mentation with all the expediency, nuance, and
implications present in natural language. For
example, it is still challenging for language process-
ing technologies to reliably discover the experiencer
of a clinical event (patient, family member, or

other), the level of certainty associated with an
event (confirmed, possible, negated) as well as
textual mentions that point to the same event. We
describe our efforts to combine annotation types
developed for general domain syntactic and seman-
tic parsing with medical-domain-specific annota-
tions to create annotated documents accessible to a
variety of methods of analysis including algorithm
and component development. We evaluate the
quality of our annotations by training supervised
systems to perform the same annotations automatic-
ally. Our effort focuses on developing principled
and generalizable enabling computational technolo-
gies and addresses the urgent need for annotated
clinical narratives necessary to improve the accuracy
of tools for extracting comprehensive clinical infor-
mation.1 These tools can in turn be used in clinical
decision support systems, clinical research combin-
ing phenotype and genotype data, quality control,
comparative effectiveness, and medication reconcili-
ation to name a few biomedical applications.
In the past decade, the general natural language

processing (NLP) community has made enormous
strides in solving difficult tasks, such as identifying
the predicate-argument structure of a sentence and
associated semantic roles, temporal relations, and
coreference which enable the abstraction of the
meaning from its surface textual form. These devel-
opments have been spurred by the targeted enrich-
ment of general annotated resources (such as the
Penn Treebank (PTB)2) with increasingly complex
layers of annotations, each building upon the previ-
ous one, the most recent layer being the discourse
level.3 The emergence of other annotation standards
(such as PropBank4 for the annotation of the sen-
tence predicate-argument structure) has brought
new progress in the annotation of semantic informa-
tion. The annotated corpora enable the training of
supervised machine learning systems which can
perform the same types of annotations automatic-
ally. However, the performance of these systems is
still closely tied to their training data. The more
divergent the test data are, such as the gap between
newswire and clinical narrative data, the lower the
performance.
In an effort to capture some of this progress and

allow rapid alignment of clinical narrative data with
other corpora, tools, workflows, and community
adopted standards and conventions, we incorporated
several layers of annotation from the general domain
into our clinical corpus, each optimized for informa-
tion extraction in a specific area. For syntactic infor-
mation, all notes were annotated following the PTB

Open Access
Scan to access more

free content

922 Albright D, et al. J Am Med Inform Assoc 2013;20:922–930. doi:10.1136/amiajnl-2012-001317

Research and applications
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
ia/article/20/5/922/2909262 by guest on 13 M

arch 2024



model,5–11 and to capture predicate-argument structure, a
PropBank4 annotation layer was created. To capture the complex
semantic types present in the clinical narrative, we used the Unified
Medical Language System (UMLS) Semantic Network schema of
entities.12 13 The established nature of these annotations provides a
valuable advantage when porting existing algorithms or creating
new ones for information extraction from the clinical narrative and
moving towards semantic processing of the clinical free text.

To our knowledge, this is the first clinical narrative corpus to
include all of these syntactic and semantic layered annotations,
making these data a unique bridge for adapting existing NLP
technology into the clinical domain. We built several NLP com-
ponents based on the annotations—a part-of-speech (POS)
tagger, constituency parser, dependency parser, and semantic
role labeler (SRL)—and did indeed find the expected perform-
ance improvements. These components have been contributed
to the open-source, Apache clinical Text Analysis and
Knowledge Extraction System (cTAKES).14 To facilitate research
on the corpus, the corpus described herein will be made avail-
able through a data use agreement with the Mayo Clinic.i

BACKGROUND
We embarked on the task of creating a corpus of layered annota-
tions and developing NLP components from it as part of a
bigger project focused on building a question answering system
for the clinical domain, the Multi-source Integrated Platform
for Answering Clinical Questions (MiPACQ).15 16 Because the
information sought through questions posed by end users could
potentially span the entire domain of medicine, one of the
requirements for the system is comprehensive information
extraction, which in turn entails comprehensive semantic pro-
cessing of the clinical narrative.

Within the clinical domain, there are only a handful of anno-
tated clinical narrative corpora. Ogren and colleagues17 devel-
oped a corpus of 160 CN annotated with the UMLS semantic
group of Disorders. Each Disorder entity mention was mapped
to a UMLS concept unique identifier (CUI). The Clinical
E-Science Framework (CLEF) corpus18 is annotated with infor-
mation about clinical named entities (NEs) and their relations as
well as with temporal information about the clinical entities and
time expressions that occurred in the clinical narrative. It con-
sists of CN, radiology reports, and histopathology reports
together with associated structured data. The entity annotations
are normalized to the UMLS semantic network. The relations
are of types has_target, has_finding, has_indication, has_loca-
tion, and modifies. Temporal expressions follow the TimeML
standard19; temporal relations are of types before, after, overlap,
and includes. Unfortunately, the corpus has not been released to
the research community.

For the 2010 i2b2/VA NLP challenge, a corpus of CN was
annotated for concepts, assertions, and relations.20 The medical
concepts were of types problem, test, and treatment. The asser-
tions for each problem concept described whether the concept
was ‘present,’ ‘absent,’ ‘possible,’ ‘conditional,’ ‘hypothetical,’
or ‘associated with someone else.’ The annotated relations were
between pairs of concepts within a sentence, one being a
problem. Types of relations were treatment is given for the
problem, treatment is not given because of the problem, treat-
ment worsened the problem, test revealed the problem, and
problem indicates another problem. The corpus consists of 826

documents and is available to researchers through data use
agreements.

The Bioscope Corpus21 consists of annotations of medical
and biological texts for negation, speculation, and their linguis-
tic scope with the goal of facilitating the development and
evaluation of systems for negations/hedge detection and scope
resolution.

The MiPACQ clinical corpus presented here differs from previ-
ous work in the layers of annotations, their comprehensiveness and
adherence to community adopted conventions and standards—
syntactic annotations following PTB guidelines, predicate-argument
semantic annotations following PropBank guidelines, and UMLS
entity semantic annotations. Thus, the layered structure allows the
development of interoperable enabling technologies critical for
semantic processing of the clinical narrative. We developed and
evaluated such technologies to demonstrate the utility of the
corpus and the expected performance gains.

METHODS
Corpus
The MiPACQ clinical corpus consists of 127 606 tokens of clin-
ical narrative, taken from randomly selected Mayo Clinic CN,
and Mayo Clinic pathology notes related to colon cancer. All
notes have been completely anonymized. In comparison, the
Wall Street Journal (WSJ) PTB we use here for training contains
37 015 sentences, with 901 673 word-tokens. Research was
conducted under an approved Institutional Board Review proto-
col from the Mayo Clinic.

Annotation layers
For each layer of annotations, we developed explicit guide-
lines.22–24 Figure 1 is used as a running example.

Treebank annotations
Treebank annotations consist of POS, phrasal and function tags,
and empty categories (see below), which are organized in a tree-
like structure (see figure 1). We adapted Penn’s POS Tagging
Guidelines, Bracketing Guidelines, and all associated addenda,
as well as the biomedical guideline8 supplements. We adjusted
existing policies and implemented new guidelines to account for
differences encountered in the clinical domain. PTB’s supple-
ments include policies for spoken language and biomedical
annotation; however, CN contain a number of previously
unseen patterns that required the refinements in the PTB anno-
tation policies. For example, fragmentary sentences like
‘Coughing up purulent material.’ which are common in clinical
data, are now annotated as S with new function tag, –RED, to
mark them as reduced and given full subject and argument
structures. Under existing PTB policies these are annotated as
top-level FRAG and lack full argument structure. Figure 2 pre-
sents examples of Treebank changes. Additionally, current PTB
tokenization was fine-tuned to handle certain abbreviations
more accurately. For example, under current PTB tokenization
policy, the shorthand notation ‘d/c’ (for the verb ‘discontinue’)
would be annotated as three tokens: d/AFX//HYPH c/VB;
however, we decided to annotate the abbreviation as one token
(d/c/VB) to better align with the full form of the verb.

Treebanking the clinical narrative entails several phases of
automatic preprocessing and manual correction of each layer of
output. First, all formatting metadata are stripped from the ori-
ginal source files. Then, the data are segmented into individual
sentences. These sentence units are fed through an automatic
tokenizer and then a POS tagger. Manual correction of segmen-
tation, tokenization, and POS tagging takes place before the

iContact Guergana.Savova@childrens.harvard.edu to initiate the data
use agreement.
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data are automatically syntactically parsed with the Bikel
parser.25 The constituency parse trees are manually corrected
and empty categories and function tags are added. Empty cat-
egories include elided arguments such as dropped subjects
(*PRO*) or moved arguments such as passive traces (*T*).
Function tags include argument labels such as –SBJ (subject) and
–PRD (predicate), and adjunct descriptors such as –LOC (loca-
tive) and –TMP (temporal). During syntactic correction any lin-
gering segmentation, tokenization, or POS tagging errors are
also corrected. All files receive a second pass of tree correction.

After all files have been through the above automatic and
manual processes, quality control checks and validation scripts
are run. Completed data provide gold-standard constituent
structure trees with function tags and traces.

Due to the resource-intensive nature of Treebanking, only a
small set (about 8% of the total completed data) was double-
annotated to calculate inter-annotator agreement (IAA). The
startup cost for this annotation project was quite high ($70 000)
since guidelines had to be adapted to the fragmentary data and
annotators had to be trained in both syntactic structure and
medical terminology, giving an overall estimated cost for
Treebanking these data of close to $100 000.

In our previous work,26 we showed results on training the
OpenNLP constituency parser on a corpus combining general
domain data and the MiPACQ data described in this manuscript.
The parser achieved a labeled F1 score of 0.81 on a corpus con-
sisting of CN and pathology notes when tested on held-out data
of clinical and pathology notes. This result is lower than the
general domain state of the art but difficult to contextualize due
to the lack of other reported work in the clinical domain.
However, it is similar to the performance of the dependency
parser described in this manuscript.

PropBank annotations
The goal of this layer of annotations is to mark the predicate-argu-
ment structure of sentences4 (see figure 1 for an example).
PropBank annotation consists of two main stages: (1) creation of
frame files for predicates (verbs and nominative predicates) occur-
ring in the data; and (2) annotation of the data using the argument
structures outlined in the frame files.

Each frame file may contain one or more framesets, corre-
sponding to coarse-grained senses of the predicate lemma. For
example, the frame file for ‘indicate’ contains a frameset for
‘show’ and a frameset for ‘recommend a course of action,’ each
of these senses having different arguments (the second sense
being especially common in medical documents). Each frameset
outlines the semantic roles that are possible or commonly used
with a given predicate, and numbers these arguments consist-
ently across predicates. See table 1 for details on arguments and
matching roles.

Linguists create the framesets as they occur in the data. The
frame creators draw assistance from lexical resources including
VerbNet27 and FrameNet,28 as well as from the framesets of analo-
gous predicates. The framesets contain numbered argument roles
corresponding to those arguments most closely related to the
predicate, but the annotators also use broader annotation labels,
ArgMs, which include supplementary arguments, such as manner
(ARG-MNR), location (ARG-LOC), and temporal information
(ARG-TMP). See figure 1 for a running example.

Data that have been annotated for Treebank syntactic struc-
ture and have had frame files created are passed on to the
PropBank annotators for double-blind annotation. The annota-
tors determine which sense of a predicate is being used, select
the corresponding frame file, and label the occurring arguments
as outlined in the frame file. This task relies on the syntactic
annotations done in Treebanking, which determine the span of
constituents such as verb phrases, which then set the boundaries
for PropBank annotation. Once a set of data has been double-
annotated, it is passed on to an adjudicator, who resolves any
disagreements between the two primary annotators to create the
gold standard. Even with the double annotation, adjudication,
and new frame file creation, the cost of PropBanking these data
is less than half the cost of Treebanking, or approximately
$40 000, with less than half of that for the ramp-up cost.

Figure 1 Example text from a clinical note with Treebank, PropBank
and UMLS annotations.
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UMLS entities
We adopted the UMLS semantic network for semantic annota-
tion of NEs.13 We chose to limit our use of semantic network
entity types to mostly semantic groups.13 By making this choice,
our annotators would not have to differentiate, for instance,
between a ‘Cell or Molecular Dysfunction’ and a ‘Neoplastic

Process,’ instead using ‘Disorder.’ In addition to reducing errors
due to lack of specific domain knowledge, this resulted in
more tokens per entity type, increasing statistical power for clas-
sification. Also, these broad semantic groups are helpful for nor-
malization against community-adopted conventions such as the
Clinical Element Model29 whose core semantic types are

Figure 2 Example of clinical Treebank guideline changes.
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Disorders, Sign or Symptoms, Procedures, Medications, and
Labs. The Sign or Symptom semantic type was annotated as a
semantic category independent of the Disorders semantic group
because many applications such as phenotype extraction and
clinical question answering require differentiations between
Disorders and Sign/Symptom. Each UMLS entity has two attri-
bute slots: (1) Negation, which accepts true and false (default)
values; and (2) Status, which accepts none (default), Possible,
HistoryOf, and FamilyHistoryOf values.

To the set of UMLS semantic categories we added the Person
category to align the annotations with the definitions in the
general domain. We felt that the UMLS semantic group of
Living Beings is too broad, while the UMLS semantic types of
Human, Patient or Disabled Group, Family Group, Age Group,
Population Group, and Professional or Occupational Group pre-
sented definitional ambiguities.

The corpus was pre-annotated for UMLS entities with
cTAKES.14 Seventy-four percent of the tokens in the MiPACQ
corpus were annotated in parallel by two annotators. The
remaining 26% were single-annotated. Double-annotated data
were adjudicated by a medical expert, creating the gold standard.

Example UMLS entities are shown in figure 1. The cost
of UMLS annotation is somewhat higher than that of
PropBanking, mainly because of the time involved in consulting
the UMLS ontology, at about $50 000–$60 000 for these data
with about a third of it for the ramp-up cost.

IAA and evaluation metrics
IAA is reported. The annotations of one annotator were used as
the gold standard against which to calculate the precision,
recall, and F1 measure of the second annotator.30

The agreement figures on the Treebank data were calculated
using EvalB,31 the most commonly used software for comparing
bracketed trees, to compute IAA as an F1 measure.30 When
comparing trees, constituents are said to match if they share the
same node label and span; punctuation placement, function
tags, trace and gap indices, and empty categories are ignored.

The agreement on PropBank data was computed using exact
pairwise matches for numbered arguments and ArgMs. In the
calculation of PropBank agreement, one ‘annotation’ consists of
at least two different constituents linked by a particular roleset.
Two annotations were counted as an ‘exact’ match if their
constituent boundaries and roles (numbered arguments, Arg0–5,
and adjunct/function or ArgM types) matched. Two annotations
were counted as a ‘core-arg’ match if their constituent boundar-
ies matched and they had the same role number or were both
ArgM types (in this type of match, the difference between
ArgM-MNR and ArgM-TMP is ignored; as long as both annota-
tors have used a type of ArgM, a match is counted). A

‘constituent’ match was counted if the annotators marked the
same constituent.

To compute UMLS IAA, we aligned the entities of two anno-
tators using a dynamic programming alignment algorithm.32 26

IAA was computed as the F1 measure between annotators.30 We
report two types of IAA that correspond to two different
approaches to aligning the spans of the entity mentions. The
first requires that the boundaries of the compared entity
mention spans match exactly, while the second allows partial
matching.

RESULTS
Corpus characteristics
The final corpus consists of 13 091 Treebanked sentences. For
the PropBanking layer of annotations, the MiPACQ data
included usages of 1772 distinct predicate lemmas, of which
1006 had existing frame files prior to the beginning of the
project. Of the 766 newly created frame files, only 74 were
verbs (the rest being predicating nouns). For example,
new frames were created for adrenalectomize, clot, disinfest,
excrete, herniated, protrusion, ossification, palpitation, and lacer-
ation, which are specific to the clinical domain. The PropBank
database can be accessed at the PropBank website.33

The majority of the annotations of numbered arguments were
to Arg0s (48.47%), with decreasing numbers of annotations for
higher-numbered arguments (table 2). This distribution is fairly
representative of PropBank annotations in general. The distribu-
tion of NE annotations over the Person and UMLS semantic
categories total 28 539 spread over 15 UMLS semantic groups,
one UMLS semantic type, and the Person semantic category
(table 2).

IAA metrics aim at estimating the quality of the gold standard
and are often considered a high bar for the expected system per-
formance, although they are not a strict upper-bound. The
MiPACQ corpus IAA results (table 3) are strong, implying com-
putational learnability. POS tagging IAA is typically significantly
higher than parse IAA.

Development and evaluation of NLP components
We built several NLP components using the MiPACQ corpus—
POS tagger, constituency parser, dependency parser, and
SRL26 34–36—which were released as a part of cTAKES.14 37 To
build statistical models for POS tagging, dependency parsing
(DEP), and dependency-based SRL, we divided the corpus into
training, development, and evaluation sets (85%, 5%, and 10%,
respectively).

The first step in building the dependency parser involves the
conversion of the constituent trees in the Treebank into depend-
ency trees. The constituent-to-dependency conversion was done
by using the Clear dependency convertor,38 although a major

Table 1 Sample sentence and PropBank frame and roles

Argument role Predicate argument Example: frame for ‘decrease’

Example: ‘Dr Brown decreased the dosage of
Mr Green’s medications by 20 mg, from 50 mg to 30 mg,
in order to reduce his nausea’

Arg0 Agent Causer of decline, agent Dr Brown
Arg1 Patient Thing decreasing The dosage of Mr Green’s medication
Arg2 Instrument, benefactive, or attribute Amount decreased by; extent or manner By 20 mg
Arg3 Starting point, benefactive, or attribute Start point From 50 mg
Arg4 Ending point End point To 30 mg
ArgM Modifier ArgM-PRP (purpose): in order to reduce his nausea
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change was made in the dependency format. The Clear depend-
ency convertor generates the CoNLL dependencies39 used for
the CoNLL’08-09 shared tasks.40 41 However, we recently dis-
covered that several NLP components have started using the
Stanford dependencies42; thus, we adapted our Clear depend-
ency conversion to the Stanford dependencies, with an import-
ant modification. The original Stanford dependency convertor
does not produce long-distance dependencies. Our approach
produces the same long-distance dependencies provided by the
CoNLL dependency conversion while using the more fine-
grained Stanford dependency labels.ii

To build a POS tagging model, we used Apache OpenNLP.43

The OpenNLP POS tagger uses maximum entropy for learning
and a simple one-pass, left-to-right algorithm for tagging. To
build a DEP model, we used the Clear dependencies described
above with Liblinear for learning38 and a transition-based DEP
algorithm for parsing.34 35 The parsing algorithm used in the
Clear dependency parser can generate both local dependencies
(projective dependencies) and long-distance dependencies (non-
projective dependencies) without going through extra steps of
pre- or post-processing. Non-projective DEP can generally be
done in quadratic time. However, our experiments showed that
in practice the Clear dependency parser gives a linear-time

parsing speed for non-projective parsing (taking about 2–3 ms
per sentence) while showing comparable accuracies against
other state-of-the-art dependency parsers.34

To build a dependency-based SRL model, we used the Clear
SLR.36 Unlike constituent-based SRL where semantic roles are
assigned to phrases (or clauses), semantic roles are assigned to
the headwords of phrases in dependency-based SRL. This may
lead to a concern about getting the actual semantic spans back,
but a previous study has shown that it is possible to recover the
original spans from the headwords with minimal loss, using a
certain type of dependency structure.39 The Clear SLR also uses
Liblinear for learning and a transition-based algorithm for label-
ing, which compares each identified predicate to all other word-
tokens in a sentence for finding its semantic arguments.

Table 4, part A provides details of the number of tokens and
sentences in each corpus we used to train a different model. We
used two different versions of the WSJ Treebank, the standard
OntoNotes version and a smaller subset equivalent in size to
our MiPACQ training corpus. We also evaluated the perform-
ance when the MiPACQ corpus was combined with both the
small and the large WSJ corpora.

Table 4, part B provides similar details of our test sets. These
include two different MiPACQ sets, since we separated out the
very formulaic pathology notes (MiPACQ-PA) so they would
not artificially increase our performance on standard CN
(MiPACQ-CN). To test portability to other genres and note
styles, we also tested on (1) radiology notes from the Strategic

Table 4 The distribution of the training data across the different corpora

Part A

WSJ
(901 K)

WSJ
(147 K)

MiPACQ
(147 K)

WSJ
+MiPACQ
(147 K
+147 K)

WSJ
+MiPACQ
(901 K
+147 K)

# Of sentences 37015 6006 11435 17441 43021
# Of
word-tokens

901673 147710 147698 295408 1049383

# Of
verb-predicates

96159 15695 16776 32471 111854

Part B

MiPACQ-CN MiPACQ-PA SHARP THYME

Genre Colon cancer Pathology Radiology Colon cancer
# Of sentences 893 203 9070 9107
# Of word-tokens 10865 2701 119912 102745
# Of verb-predicates 1355 145 8573 8866

CN, clinical notes; PA, pathology notes; WSJ, Wall Street Journal.

Table 2 Frequency of annotations

Annotation type
Raw annotation
counts In %

PropBank argument: Arg0 9647 48.47

PropBank argument: Arg1 2901 14.58
PropBank argument: Arg2 146 0.73
PropBank argument: Arg3 109 0.55
PropBank argument: Arg4 0 0.00
PropBank argument: ArgM 7098 35.67
PropBank argument: Total 19901 100.00

UMLS semantic group: Procedures 4483 15.71
UMLS semantic group: Disorders 4208 14.74
UMLS semantic group: Concepts and Ideas 4308 15.10
UMLS semantic group: Anatomy 3652 12.80
UMLS semantic type: Sign or Symptom 3556 12.46
UMLS semantic group: Chemicals and Drugs 2137 7.49
UMLS semantic group: Physiology 1669 5.85
UMLS semantic group: Activities and
Behaviors

990 3.47

UMLS semantic group: Phenomena 847 2.97
UMLS semantic group: Devices 282 0.99
UMLS semantic group: Living Beings 120 0.42
UMLS semantic group: Objects 103 0.36
UMLS semantic group: Geographic Areas 84 0.29
UMLS semantic group: Organizations 60 0.21
UMLS semantic group: Occupations 24 0.08
UMLS semantic group: Genes and Molecular
Sequences

1 0.00

Non-UMLS semantic category: Person 2015 7.06
UMLS and non-UMLS semantic annotations:
Total

28539 100.00

UMLS, Unified Medical Language System.

Table 3 Inter-annotator agreement results (F1 measure)

Average IAA

Treebank 0.926
PropBank, exact 0.891
PropBank, Core-arg 0.917
PropBank, Constituent 0.931
UMLS, exact 0.697
UMLS, partial 0.750

IAA, inter-annotator agreement; UMLS, Unified Medical Language System.

iiA long-distance dependency is a dependency relation between a pair of
word-tokens that are not within the same domain of locality.
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Health IT Advanced Research Project: Area 4 project
(SHARP44), and (2) colon cancer clinical and pathology notes
from Temporal Histories of Your Medical Events, an NIH
Project on Temporal Reasoning (THYME45).

Table 5 shows results for POS tagging (POS), dependency
parsing (DEP), and dependency-based semantic role labeling
(SRL), respectively, using the training and evaluation sets
described above. ACC shows accuracies (in %). UAS and LAS
show unlabeled attachment scores and labeled attachment scores
(in %). AI−F1 and AI+AC−F1 show F1 scores of argument iden-
tification and both identification and classification (in %),
respectively.

The results on the formulaic MiPACQ pathology notes, as
expected, were very high. POS tagging is 98.67%, LAS for DEP
is 89.23%, and the F1 score for argument identification and clas-
sification for SRL is 90.87%. It is unusual to encounter new phe-
nomena in these notes that have not already been seen in the
training data.

DISCUSSION
The layered syntactic and semantic annotations of the MiPACQ
clinical corpus present the community with a new comprehensive
annotated resource for further research and development in clin-
ical NLP. One of the primary ways in which these annotations
will be used is in the creation of NLP components as described in
the ‘Development and evaluation of NLP components’ section,
for use in tasks such as information extraction, question answer-
ing, and summarization to name a few. The 766 biomedical-
related PropBank frame files created for this project are available
on-line and add to the comprehensiveness of existing frame files.
As expected, the existence of domain-specific annotations
improves the accuracy for all of the NLP components.

The agreement on Treebank and PropBank annotations is
similar to that reported in the general domain. The agreement
on the UMLS annotations is similar to results reported previ-
ously.17 Rich semantic annotations of the type described in this
paper are the building blocks to more complex tasks, such as
the discovery of implicit arguments and inferencing.46 Systems
for analyzing these complicated phenomena will require a large
number of resources to ensure accuracy and efficacy. The anno-
tations completed in this project provide complementary

information to other annotated resources, such as Informatics
for Integrating Biology at the Bedside (i2b2)47 and Ontology
Development and Information Extraction,48 49 helping to create
a more complete set of resources.

The results that we report here on critical NLP components—
POS tagger, dependency parser, and SRL—can be used as base-
lines in the clinical NLP community, especially given the fact
that the dependency parser and the SRL components are among
the first of their kind in the clinical domain. Semantic role label-
ing is still a relatively new representation in the NLP community,
but it is beginning to contribute to significant improvements in
question answering and coreference.50 51 Within the domain of
biomedicine, one immediate application is the discovery of the
subject of a clinical event, be it the patient, a family member,
donor, or other. cTAKES implements such a module which dir-
ectly consumes the output of the semantic role labeling
described in this manuscript. As our NLP results improve to the
point where they will better support these types of applications,
we expect to see increased interest in semantic role labeling.
Our current efforts on which we will be reporting separately are
focusing on the higher level components such as UMLS named
entity recognition (NER).

For POS tagging, DEP, and dependency-based SRL, all models
trained on the MiPACQ corpus show significant improvements
over those trained on the WSJ corpus (McNemar, p<0.0001),
although the MiPACQ models are trained on far fewer data. This
implies that having even a small amount of in-domain annotation
can enhance the quality of these NLP components for this
domain. We expect these data to provide some improvement in all
clinical narrative data, but the more divergent the data are from
our corpus, the less improvement there will be. This approach to
NLP still requires additional domain-specific annotations for the
highest possible performance, and the clinical arena has a multi-
tude of domains. Various domain-adaptation techniques can be
applied to improve the performance, which we will explore in the
future. Notice that the MiPACQ models show higher accuracies
for MiPACQ-PA than MiPACQ-CN in all three tasks. From our
error analysis, we found that sentences in MiPACQ-PA were very
uniform among themselves , so not many training data are needed.

The MiPACQ models also showed a significant improvement
over the WSJ models for our other test sets, SHARP and
THYME. The performance is almost 10% lower than for
MiPACQ. However, notice that the WSJ performance is also
10% lower. These test sets have more sentence fragments and
novel vocabulary than the MiPACQ test set, and are correspond-
ingly more challenging. The advantage of being able to develop
annotations in close collaboration with the Penn Treebankers is
reflected in the consistent parsing results across genres.

One of the most significant limitations that has been uncov-
ered by this project is the need for a widely agreed-upon
annotation schema for the clinical NLP community. While the
UMLS is generally accepted as the go-to schema for semantic
annotation of biomedical information, this project has high-
lighted shortcomings. As the UMLS schema was not originally
designed for annotation use, the definitions of some of the
semantic types are closely overlapping. For example, there did
not seem to be a clear semantic group or category unambigu-
ously encompassing Person mentions. This necessitated the
usage of the non-UMLS Person semantic category. In addition,
the sheer size of the UMLS schema increases the complexity
of the annotation task and slows annotation, while only a
small proportion of the annotation types present are used.
Because of this level of complexity, we chose to annotate pre-
dominantly at the level of the UMLS semantic groups. In our

Table 5 Evaluation on the MiPACQ corpus/SHARP corpus/THYME corpus

Evaluation
metric

WSJ
(901 K)

WSJ
(147 K)

MiPACQ
(147 K)

WSJ
+MiPACQ
(147 K
+147 K)

WSJ
+MiPACQ
(901 K
+147 K)

POS ACC 88.62 87.79 94.28 94.39 94.11
81.71 81.38 90.13 89.17 87.59
83.07 82.32 92.12 92.00 90.84

DEP UAS 78.34 75.59 85.72 85.30 85.40
67.34 65.01 74.93 74.70 73.89
65.58 62.11 73.21 73.56 73.95

LAS 74.37 70.40 83.63 83.23 83.31
62.63 59.09 72.19 71.80 70.35
60.23 56.33 70.26 70.76 70.96

SRL AI−F1 76.98 74.57 86.58 87.31 88.17
74.29 71.57 80.86 82.86 82.66
74.16 72.17 86.20 86.69 86.29

AI+AC−F1 67.63 63.44 77.72 79.35 79.91
62.16 57.03 69.43 71.64 72.00
63.28 58.32 76.69 77.46 78.38

DEP, dependency parsing; LAS, labeled attachment scores; POS, part-of-speech; SLR,
semantic role labeler; UAS, unlabeled attachment scores; WSJ, Wall Street Journal.
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project motivated by user requirements we chose to refine the
annotations by using the UMLS semantic type Sign or
Symptom by itself independently of the Disorder semantic
group. The schema adaptations discussed in the present
article must be viewed not as defining a finished schema, but
as the initial significant steps required for comprehensive
annotation. As the UMLS semantic hierarchy allows adapta-
tions, standardization across different groups and projects
would enhance collaboration efforts.

Although the CN used in this project provide a large variety
of syntactic and semantic information, the performance of any
biomedical NLP system would only be improved by the anno-
tation of additional types of data, such as discharge summaries,
emergency department notes, and call transcripts. Under
SHARP444 we are annotating a 500 K word corpus consisting
of a representative set of CN from two institutions. Our start-
ing point is the layered annotations, guidelines, and schemas
described here. To that, we are adding coreference and tem-
poral relations.52 For each layer, our future efforts will involve
developing generalizable principled algorithms. We will also
explore active learning methods to decrease the annotation cost
without sacrificing annotation quality.53 54

CONCLUSION
In this paper, we have described a foundational step towards
building a manually annotated lexical resource for the clinical
NLP community using three layers of annotation: constituency
syntax (Treebank), predicate-argument structure (PropBank),
and clinical entities (UMLS). By using this multi-layered
approach, we have created the first syntactically and semantic-
ally annotated clinical corpus, and this has major implications
for clinical NLP in general. In addition to enabling the biomed-
ical field to take advantage of previously developed NLP tools,
this project has shown that syntactic and semantic information
can be effectively annotated in clinical corpora, and that a rea-
sonable level of inter-annotator agreement and NLP compo-
nent performance can be achieved for all of these annotation
layers.
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