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ABSTRACT
Objective DNA methylation, a regulator of gene
expression, plays an important role in diverse biological
processes including developmental process, carcinogenesis
and aging. In particular, aberrant DNA methylation has
been largely observed in several types of cancers. Currently,
it is important to extract disease-specific gene sets
associated with the regulation of DNA methylation.
Materials and methods Here we propose a novel
approach to find the minimum regulatory units of genes,
co-methylated and co-expressed gene pairs (MEGP) that
are highly correlated gene pairs between DNA methylation
and gene expression showing the co-regulatory
relationship. To evaluate whether our method is applicable
to extract disease-associated genes, we applied our
method to a large-scale dataset from the Cancer Genome
Atlas extracting significantly associated MEGP and
analyzed their functional correlation.
Results We observed that many MEGP physically
interacted with each other and showed high semantic
similarity with gene ontology terms. Furthermore, we
performed gene set enrichment tests to identify how they
are correlated in a complex biological process. Our MEGP
were highly enriched in the biological pathway associated
with ovarian cancers.
Conclusions Our approach is useful for discovering
coordinated epigenetic markers associated with specific
diseases.

INTRODUCTION
Epigenetic regulation including DNA methylation
and histone modification plays an important role in
various regulatory cellular processes. DNA methy-
lation is an important mechanism of gene silencing
and control of gene expression.1 There is a strong
correlation between DNA methylation and tran-
scriptional inhibition.2 High levels of methylations
in CpG islands of promoters lead to decreased
gene expression, whereas low levels of methylation
in promoters increase gene expression. In particu-
lar, pattern changes due to aberrant DNA methyla-
tion at some promoters have been shown to play a
critical role in disease pathogenesis including car-
cinogenesis.3 In fact, significant differences in spe-
cific methylation and gene expression levels have
been observed between normal cells and cancer
cells.4 5

Several epigenomic studies have recently
reported that coordinated patterns of DNA methy-
lation and gene expression are involved in a gene
regulatory system. Most previous studies have
focused on cancer and stem cell regulatory systems.
For example, the coordinated alterations of pro-
moter DNA methylation and gene expression were
identified in a distinct subset of glioblastoma tumor

samples.6 A more interesting epigenomic pattern
was observed in a regulatory circuit for major genes
such as Oct4, Sox2, and Nanog with essential roles
in the development of embryonic stem cells.7 In
this circuit, dense methylation was markedly found
in the Oct4 and Nanog promoters, and they
co-occupied a substantial portion of their target
genes.8 These regulatory relationships raise several
questions for the analysis of gene regulatory
systems including: which genes show a negative
correlation between gene expression and DNA
methylation in their promoters; which genes are
correlated simultaneously in gene expression as
well as DNA methylation; and which biological
processes are related to those genes.
Practical computational methods are needed to

answer these questions from given profiles of methy-
lation and gene expression. Previously, Louhimo and
Hautaniemi9 introduced a method to find coordi-
nated relationships by integrating multiple profiles
such as DNA methylation and gene expression pro-
files. This method integrates copy number status and
methylation profile with the expression level of a spe-
cific gene. However, it has limited function, that is, it
does not provide the regulatory relationship between
genes regulated by DNA methylation and expression.
In detail, it does not extract gene pairs or sets that are
co-expressed as well as co-methylated.
Here we propose a novel method to find

co-methylated and co-expressed gene pairs (MEGP)
that are highly correlated with each other epigeneti-
cally. We identify gene pairs by comparing patterns
between DNA methylation and gene expression
and measuring the similarity of both profiles
between two genes. Our method is based on the
differential co-expression score that measures how
much two genes are differentially methylated and
expressed as well as how much their methylation
and expression patterns are similar. To demonstrate
the utility of our methodology, we analyzed the
gene expression and methylation profiles from
patients with ovarian cancer cells. Alternatively, our
method finds MEGP that are likely to be involved
in the epigenetic gene network and functionally
correlated in specific biological processes. Using
information such as physical interaction and seman-
tic relationships between genes, we assessed
whether these pairs are functionally correlated.
Furthermore, we explored their functions in a
complex biological process by performing the gene
set enrichment test.

MATERIALS AND METHODS
DNA methylation and gene expression profiles
The DNA methylation and gene expression data-
sets in ovarian cancers were obtained from the
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Cancer Genome Atlas (TCGA).10 Each dataset consisted of
ovarian cancer (n=496) and healthy controls (n=9). We col-
lected DNA methylation profiles using the Infinium
HumanMethylation27 Beadchip that covers 27 578 CpG loci
and collected gene expression profiles using 12 034 probes of
the AffymetrixHT Human Genome U133 Array. Then, we con-
structed matrices for the DNA methylation and gene expres-
sion profiles. In each matrix, the row corresponded to 9129
genes that are overlapped between both sets and the column
corresponded to a total of 505 samples. In the matrix of DNA
methylation, each cell indicated a normalised methylation level
(β value).

Co-methylated and co-expressed gene pairs
We measured the MEGP score for pairs of all the genes using
the methylation and gene expression profiles. It was calculated
by combining two scores, the differential score and correlation
score, which measures the regulatory relationship between both
profiles. Here the differential score measures how much two
genes are differentially methylated as well as differentially
expressed between the disease and control samples. On the
other hand, the correlation score measures how much the DNA
methylation and expression patterns are similar between two
genes.

Let n denote the number of profile types and m the number
of sample types. In our case, both numbers are fixed as follows:
n=2 (ie, DNA methylation and gene expression) and m=2 (ie,
cancer and control). When given a gene pair, X and Y, a vector
of variables, Xij (or Yij) belongs to one of four categories:

1. If i=1 and j=1, Xij (or Yij) ∈ methylation and cancer
samples,

2. else if i=2 and j=1, Xij (or Yij) ∈ expression and cancer
samples,

3. else if i=1 and j=2, Xij (or Yij) ∈ methylation and control
samples,

4. else if i=2 and j=2, Xij (or Yij) ∈ expression and control
samples.

Here the index i corresponds to the type of profile and the
index j indicates the type of sample.

First, we describe the differential score that measures how
much two genes, X and Y are differently methylated and
expressed between the cancer and control group. When δ is
defined as the mean fold change between the cancer and control
group, it is transformed by a sigmoid function, making the value
from 0 to 1.

PðXi�Þ ¼ 2

1þ expð�ajdðXi�ÞjÞ � 1 and PðYi�Þ

¼ 2

1þ expð�ajdðYi�ÞjÞ � 1 ð1Þ

Here α is a parameter that controls the smoothness of the
fold change value. In general, a high level of methylation in the
CpG islands of promoters leads to decreased expression of
genes, whereas a low level of methylation leads to increased
expression. Therefore, we only perform further calculations
when an inverse relationship is shown between methylation and
expression, that is, the fold change of methylation and that of
gene expression are opposite: sign(δ (X1�)) ≠ sign(δ (X2�)). This
step is able to decrease the total computing cost significantly for
all pairwise calculations for scoring.

Using these sigmoid functions, the differential score is calcu-
lated by the following equation:

SdðX; YÞ ¼ 1
2n

Xn

i¼1
ðPðXi�Þ þ PðYi�ÞÞ ð2Þ

Here P(Xi�) means the difference between cancer and control in
DNA methylation and gene expression level for a gene
X. P(X1�) thus indicates the modified fold change between
cancer and control in DNA methylation, and P(X2�) indicates
the modified fold change in gene expression. P(Yi�) is a value for
gene Y similarly.

Second, we describe the correlation score that measures how
much a gene pair, X and Y, is similar in the pattern of DNA
methylation and gene expression level simultaneously. The cor-
relation score is calculated by the following function:

ScðX; YÞ ¼ 1
nm

Xn

i¼1

Xm

j¼1
rðXij; YijÞ ð3Þ

This equation takes the average of four possible correlations
between two genes. Here, r(Xij, Yij) calculates the Pearson cor-
relation coefficient between two genes.

Finally, the MEGP score between any two genes is calculated
by integrating both scores, the differential score and the correl-
ation score:

SðX; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SdðX;YÞb þ ScðX; YÞb

q
ð4Þ

Here β is a parameter that adjusts points scaled by the square
root. Basically, the MEGP score catches gene pairs of which
both the differential score and correlation score are high. The
threshold for a significant MEGP score is estimated by the per-
mutation test of both the DNA methylation and gene expression
matrices. With a similar framework, we can also measure a
single type of profile. When we measure differentially
co-methylated gene pairs (MGP), the number of profile types is
one and X1� indicates a variable for methylation. The measure-
ment for differentially co-expressed gene pairs (EGP) is also cal-
culated in a similar way.

The controlling parameters have the following characteristics.
If α is lower, the MEGP score will concentrate on the correl-
ation score. On the other hand, if this value is higher, it will
concentrate on the differential score. When β is lower, the
MEGP score will reflect the effect of combining both scores.
According to the change in parameters α and β, the trend,
whether the MEGP scores are balanced, is also shown in
supplementary figure S2 of additional file 2 (available online
only). In our experiment, the two parameters α and β were set
to 1.0 and 0.1, respectively. The proper balance between both
scores was observed in these parameter values.

Measurement of MEGP by expected conditional F-statistic
We compared the performance of the proposed method with a
previous method, expected conditional F-statistic (ECF). It
recognises the correlated pattern by extending the traditional
F-statistic so that it can measure the differential gene–gene
co-expression across different groups.11 The ECF statistic of a
correlation between genes X and Y is defined as:

ECFðX; YÞ ¼ EYðFXjY¼yÞ þ EXðFYjX¼xÞ ð5Þ
Here the ECF statistic is not symmetric so that two ECF statis-
tics EYðFXjY¼yÞ and EXðFYjX¼xÞ may be different. The differen-
tial gene–gene co-expression patterns are ranked by combining
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them. More details on the ECF statistic method are shown in
the paper by Lai et al.11

Currently, scoring of the ECF statistic method is only applied
to the analysis of gene expression profiles. Therefore, we refor-
mulated previous ECF statistics by combining the ECF statistic
for DNA methylation and that for gene expression. The modi-
fied ECF score is calculated by the average ECF statistics of
DNA methylation and gene expression as follows:

ECFmeðX; YÞ ¼ 1
2
½ECFðXm; YmÞ þ ECFðXe; YeÞ� ð6Þ

Here we also performed this calculation when the relationship
between the fold change of methylation and that of gene expres-
sion is negative.

Measurement of functional correlations
In order to assess the functional correlation of each gene pair,
we measured their physical connectivity using human protein–
protein interaction (PPI) data and semantic similarity based on
gene ontology (GO) terms, respectively. Previous studies have
reported that PPI revealed relationships between functionally
linked genes.12 13 We expect that two genes lie close together in
PPI networks if they are functionally correlated. It is more likely
that the regulation of co-expression and co-methylation between
two genes allows them to coordinate their functional coupling.
Human PPI data were obtained from the protein interaction
network analysis platform that contains 77 158 interactions
from six public databases (MINT, IntAct, DIP, BioGRID, HPRD
and MIPS/MPact) (updated 25 February 2011).14 The network
distance between two proteins was measured by the NetworkX
package (https://networkx.lanl.gov/). The semantic similarity

was measured by GOSemSim in which four information content
methods and a graph-based method were implemented.15

RESULTS
Extracting MEGP
In order to extract MEGP, we applied our MEGP scoring
method to DNA methylation and gene expression datasets of
ovarian cancer samples in TCGA.10 Our scoring method mea-
sures how much two genes are differentially methylated and
expressed between cancer and control samples as well as how
much they are correlated over the methylation and gene expres-
sion profiles. In addition, it explores simultaneously specific
regulatory patterns so that the methylation ratio and expression
ratio have an inverse relationship (figure 1). The inputs of the
proposed scoring method consisted of two matrices of DNA
methylation and two matrices of gene expression of the same
size. These two matrices consisted of 9129 genes×496 cancer
samples and 9129 genes×9 healthy control samples. From these
inputs, we extracted a total of 1133 significant MEGP contain-
ing 423 unique genes, with a cut-off corresponding to a p value
less than 10−4 from the permutation test (see supplementary
additional file 1, available online only).

First of all, we focused on the annotation of the highest
ranked gene pairs among the MEGP. The top-ranked MEGP
among significant pairs (the q values are close to zero) are
shown in table 1. Many genes were annotated as functions
related to oncogenes. As shown in table 1, oncogene proteins
such as epithelial cell transforming sequence 2 oncogene and
differentially expressed genes in cancers such as
microtubule-associated homolog were observed. In particular,
lymphocyte-specific protein 1 associated with breast cancer16

was significantly correlated with SPI-1 proto oncogene that

Figure 1 Schematic view of our approach to find co-methylated and co-expressed gene pairs (MEGP). It is the workflow of the MEGP analysis,
which finds gene pairs correlated between DNA methylation and gene expression by the scoring function. This figure is only reproduced in colour in
the online version.
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promotes cancer progression via DNA replication.17 These find-
ings suggest that a number of genes belonging to MEGP have
substantial epigenetic changes and may cooperate with each
other in cancers.

We also obtained MEGP with the previous method, ECF stat-
istic, which measures the differential gene–gene co-expression
across different groups.11 Because it can measure only the
co-expression of a gene pair, we modified it by adding gene–
gene co-methylation to the previous measurement. After sorting
by average significance of ECF, we extracted 1133 gene pairs.
We could not find oncogene-related genes in the top-ranked
gene pairs. Only 7.3% among the MEGP by scoring (83 gene
pairs) overlapped with the MEGP from the ECF statistic. The
list of MEGP from the ECF statistic and the shared pairs are
shown in supplementary additional files 1 and 2, supplementary
table S1 (available online only). We further compared functional
similarity between the different methods using network con-
nectivity with the PPI network and semantic similarity by GO.

Comparison of network connectivity and semantic similarity
We measured how closely the MEGP are connected using
human PPI data obtained from the protein interaction network
analysis platform.14 As most proteins do not directly interact
with each other, we measured the network distance for all
MEGP including direct and indirect protein interactions. We
compared the shortest distance distributions of gene pairs

extracted by seven different methods (figure 2). MEGP extracted
by scoring methods were more closely connected while those
extracted by the ECF statistic were not. The distances of gene
pairs extracted by single scoring methods such as MGP or EGP
were higher than those extracted by the scoring method com-
bining both. This result suggests that MEGP extracted by
scoring methods have a higher probability of being functionally
linked.

Furthermore, we extracted MEGP by direct physical interac-
tions. Among the total MEGP, 2.7% (MEGP consisting of 39
unique genes) were found in the PPI network (see supplemen-
tary additional file 2, supplementary figure S1, available online
only). Although this percentage of interactions is still low, it is
substantially greater than expected from the random distribu-
tion. The rate of PPI gene pairs extracted by single scoring
methods is not far from the random distribution. As more inter-
actions are observed in the proteins of EGP than in those of
MGP, it suggests that the patterns of gene expression profiles
contribute more to finding functionally related gene pairs. Gene
pairs extracted by the ECF statistic tend to have less interaction.

In addition, we assessed the functional similarity of gene
pairs, using five methods measuring the semantic similarity,
including four information content methods and a graph-based
method, proposed by Wang et al.18 These methods measure the
similarity between given two GO terms or two sets of terms. We
performed the semantic comparisons of GO annotations in

Figure 2 Comparison of the shortest
distance distributions of gene pairs
extracted by seven different methods
using protein–protein interaction data.
ECF, expected conditional F-statistic;
EGP, co-expressed gene pairs; MEGP,
co-methylated and co-expressed gene
pairs; MGP, co-methylated gene pairs.
This figure is only reproduced in colour
in the online version.

Table 1 The top 10 ranked MEGP that are extracted from the proposed scoring method

Gene pair Description (first gene) Description (second gene) MEGP score

BUB1 CENPE Mitotic checkpoint serine/threonine-protein kinase BUB1 Centromere-associated protein E 1.374
MSH2 RFC3 Truncated mutS homolog 2 protein Unknown 1.374
BUB1 CCNA2 Mitotic checkpoint serine/threonine-protein kinase BUB1 Cyclin-A2 1.374
HSPA14 MCM10 Heat shock 70 kDa protein 14 Minichromosome maintenance protein 10 1.373
BUB1 CHEK2 Mitotic checkpoint serine/threonine-protein kinase BUB1 CHK2 checkpoint homolog 1.373
ANP32E CHEK1 Unknown Checkpoint kinase 1 1.372
CCNA2 FBXO5 Cyclin-A2 F-box protein 5 1.372
BUB1 FBXO5 Mitotic checkpoint serine/threonine-protein kinase BUB1 F-box protein 5 1.372
CDCA8 OIP5 Borealin Unknown 1.372
C12orf48 OIP5 PARP1-binding protein Unknown 1.372

MEGP, co-methylated and co-expressed gene pairs.
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three different categories, including ‘BP’ (biological process),
‘MF’ (molecular function) and ‘CC’ (cellular component). Gene
pairs extracted by the MEGP scoring method had overall higher
semantic similarities than random pairs in the measurements
including ‘Resnik’, ‘Lin’, ‘Jiang’, ‘Rel’ and ‘Wang’ (table 2).18–20

Furthermore, semantic similarities of those pairs were higher
than the similarities measured from the EGP and MGP, shown
in supplementary table S2 of additional file 2 (available online
only). It suggests that our method could find close functional
correlation between gene pairs. It is more efficient than when
DNA methylation and gene expression profiles are independ-
ently used. Gene pairs extracted by MEGP ECF statistics had

overall higher semantic similarities than random pairs, whereas
those similarities were not always higher than similarities mea-
sured by the EGP ECF statistics.

Enriched ovarian cancer-associated gene sets
To identify the functional role of our extracted MEGP in
ovarian cancer, we performed enrichment analysis using gene
sets of chemical and genetic perturbations. We extracted signifi-
cantly enriched gene sets among a total of 2392 chemical and
genetic perturbation gene sets in the MSigDB collections (http://
www.broadinstitute.org/gsea/msigdb/). As shown in figure 3, we
observed that two gene sets were associated with ovarian

Figure 3 Ovarian cancer-related subnetwork identified from the gene set enrichment analysis. The interacting protein pairs are linked with lines
and the downstream genes of Y-box-binding protein 1, CDKN1A and TP53 in ovarian cancer are linked to them with arrows. This figure is only
reproduced in colour in the online version.

Table 2 Comparison of three different methods in semantic similarity for gene pairs

Gene pairs

Categories Methods for semantic similarity MEGP: scoring MEGP: ECF statistics Random pairs

MF (molecular function) Resnik19 0.114 (±0.035) 0.087 (±0.037) 0.077 (±0.035)
Lin 0.652 (±0.171) 0.452 (±0.199) 0.366 (±0.186)
Relevance20 0.487 (±0.131) 0.336 (±0.151) 0.271 (±0.141)
Jiang and Conrath’s 0.742 (±0.137) 0.570 (±0.171) 0.486 (±0.172)
Wang18 0.762 (±0.119) 0.610 (±0.146) 0.556 (±0.144)

BP (biological process) Resnik 0.204 (±0.076) 0.169 (±0.037) 0.120 (±0.035)
Lin 0.351 (±0.128) 0.309 (±0.199) 0.232 (±0.186)
Relevance 0.319 (±0.133) 0.272 (±0.151) 0.198 (±0.141)
Jiang and Conrath’s 0.330 (±0.121) 0.314 (±0.171) 0.255 (±0.172)
Wang 0.341 (±0.101) 0.331 (±0.146) 0.265 (±0.144)

CC (cellular component) Resnik 0.198 (±0.052) 0.147 (±0.037) 0.098 (±0.035)
Lin 0.553 (±0.127) 0.419 (±0.199) 0.307 (±0.186)
Relevance 0.470 (±0.123) 0.351 (±0.151) 0.239 (±0.141)
Jiang and Conrath’s 0.657 (±0.108) 0.586 (±0.171) 0.555 (±0.172)
Wang 0.655 (±0.100) 0.562 (±0.146) 0.501 (±0.144)

The values for the mean and SD for the semantic similarity are shown. Random pairs mean gene pairs randomly selected, having the same number as that of the MEGP.
ECF, expected conditional F-statistic; MEGP, co-methylated and co-expressed gene pairs.
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cancers among 56 significantly enriched gene sets (p<10−10)
from the total gene sets. Among 39 physically interacting
MEGP genes, 12 genes are involved in two gene sets that are
upregulated under Y-box-binding protein 1 knockout
conditions.21

Moreover, six genes are downstream of the CDKN1A gene,
encoding p21WAF1/CIP1 and the TP53 gene, encoding tumor
protein p53 (figure 3).22 In particular, minichromosome main-
tenance deficient 4 (MCM4) and MCM3 involved in the initi-
ation of eukaryotic genome replication and cyclin A2 (CCNA2),
a RAD51 homolog (RAD51), and CHK1 checkpoint homolog
(CHEK1) are functionally associated with the cell cycle process.
Consequently, this observation significantly suggests that these
genes associated with the cell cycle process could lead to a
defect in the DNA replication process and cause mutations and
abnormal tissue growth in ovarian cancer.

DISCUSSION
We proposed a novel approach to find MEGP that are tightly
correlated in DNA methylation as well as gene expression,
regarded as the units of genes in a regulatory relationship. Our
method found many MEGP that are more likely to be function-
ally correlated in specific biological processes and PPI networks,
when we applied it to the datasets of gene expression and
methylation profiles from patients with ovarian cancer cells.
Furthermore, we found a number of downstream genes, per-
turbed by mutations in ovarian cancer, which were significantly
overlapped with the set of MEGP.

To the best of our knowledge, there is no method to extract
easily differentially expressed as well as differentially methylated
gene pairs. Our method provides a unified scoring function to
extract simultaneously the pairwise patterns of altered DNA
methylation and gene expression between normal and disease
samples. Although the proposed function is simply formulated
by integrating the fold change and the correlation coefficient, it
clearly extracts a number of significantly correlated gene pairs
associated with epigenetic events. Employing our approach, we
can rank the gene pairs and are able to determine which gene
pairs are more epigenetically correlated. Despite this advantage,
it has a weakness in the parameter setting. Our method needs
parameters to control the balance between the differential score
and the correlation score. Therefore, the fine tuning of the para-
meters for other datasets may be required.

Furthermore, our method can be applied to other types of
datasets integrated with gene expression profiles, such as copy
number variants, single nucleotide variants and micro RNA. As
diverse high-throughput technologies for genome analysis have
developed rapidly, the integration of multiple types of genome
data has become an important problem. Among many genome
projects, the TCGA project provides a large amount of multiple-
dimensional datasets. Our future study will be more focused on
identifying significant gene patterns from these multiple genome
datasets with a similar strategy.

As epigenetic biomarkers can be utilised to support clinical
decision making, it is important to discover useful epigenetic
patterns associated with specific diseases. In conclusion, our
approach could contribute to understanding functional modules
or pathways associated with diverse diseases such as certain

malignant tumors by identifying key regulatory components of
DNA methylation and gene expression.
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