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Electronic medical record phenotyping
using the anchor and learn framework
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ABSTRACT
....................................................................................................................................................

Background Electronic medical records (EMRs) hold a tremendous amount of information about patients that is relevant to determining the optimal
approach to patient care. As medicine becomes increasingly precise, a patient’s electronic medical record phenotype will play an important role in
triggering clinical decision support systems that can deliver personalized recommendations in real time. Learning with anchors presents a method
of efficiently learning statistically driven phenotypes with minimal manual intervention.
Materials and Methods We developed a phenotype library that uses both structured and unstructured data from the EMR to represent patients for
real-time clinical decision support. Eight of the phenotypes were evaluated using retrospective EMR data on emergency department patients using
a set of prospectively gathered gold standard labels.
Results We built a phenotype library with 42 publicly available phenotype definitions. Using information from triage time, the phenotype classifiers
have an area under the ROC curve (AUC) of infection 0.89, cancer 0.88, immunosuppressed 0.85, septic shock 0.93, nursing home 0.87, anticoa-
gulated 0.83, cardiac etiology 0.89, and pneumonia 0.90. Using information available at the time of disposition from the emergency department,
the AUC values are infection 0.91, cancer 0.95, immunosuppressed 0.90, septic shock 0.97, nursing home 0.91, anticoagulated 0.94, cardiac eti-
ology 0.92, and pneumonia 0.97.
Discussion The resulting phenotypes are interpretable and fast to build, and perform comparably to statistically learned phenotypes developed
with 5000 manually labeled patients.
Conclusion Learning with anchors is an attractive option for building a large public repository of phenotype definitions that can be used for a range
of health IT applications, including real-time decision support.

....................................................................................................................................................
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INTRODUCTION
As the complexity of clinical decision-making grows to incorporate in-
creasingly precise understandings of factors that determine individual
risk as well as individual response to treatments and their interactions,
this must be accompanied by effective decision support that can guide
day-to-day clinical practice. The ability to integrate information from
electronic medical records (EMRs) into clinical workflows, ranging
from real-time clinical decision support to retrospective cohort analy-
ses, will be increasingly important for precision medicine.

Much of the clinical data routinely collected during patient encoun-
ters is in a format that is difficult to use in downstream applications.
Structured data such as problem lists are often incomplete1,2 and thus
by themselves not reliable for making important clinical decisions.
Actionable data in EMRs is often found in unstructured free-text notes.
Allowing free-text input is important because it provides health care
providers with the expressiveness of natural language to convey the
nuances of a patient’s unique presentation and history.3 Unfortunately,
this expressiveness makes it more challenging to process the data in
meaningful ways. The distillation of diverse information sources from
the electronic medical record into intermediate variables that can then
be used as trusted pieces of information in downstream logic has
been identified as a grand challenge in clinical decision support.4

We describe and evaluate a method of extracting simple facts about
patients from their electronic medical records, which are suitable to use
as input for downstream real-time health-IT applications. These facts

serve as a knowledge representation of the individual patient, distilling
the entire patient narrative into a form suitable as input for clinical deci-
sion support, bringing personalized evidence-based risk assessments
and treatment recommendations to the bedside. While we consider the
real-time clinical decision support setting in this work, this same
method of extracting patient representations from records would be
useful in retrospective analyses and observational studies.

Background
Phenotypes based on data in the electronic medical record have been
used to identify adverse drug events,5 perform genome-wide associa-
tion studies,6–11 and for other large-scale health research initia-
tives.12–16 While there has been considerable success in sharing
community-built phenotypes for research purposes (eg, the PheKB
knowledge base),17 there has been less work on building phenotypes
for activating clinical decision support in real time. Phenotypes in-
tended for retrospective studies often rely heavily on ICD9
(International Classification of Diseases - 9) and CPT (Current
Procedural Terminology) codes, which would typically not be available
in time to be useful for clinical decision support. Recent work also in-
cludes input from free text either in the form of simple queries18 or us-
ing more advanced natural language processing.19

Phenotypes in PheKB are developed manually through a rigorous
process, requiring multiple iterations and eventual physician consen-
sus. The final definitions achieve high concordance with clinical gold
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standards, but are time consuming to build.17 In contrast to the manu-
ally derived rules for electronic phenotyping, statistical methods,
drawing on established machine learning techniques, have been used
to estimate phenotypes based on inputs from the EMR. Previous work
has shown success in estimating phenotypes from raw data (e.g.,
smoking status,20,21 rheumatoid arthritis,22 and colorectal cancer23),
but the methodology for developing these predictors invariably uses
manually labeled cases and controls derived from chart review. As
such, these efforts are limited in scope, focusing on 1 or 2 phenotypes
at a time. In addition, the learned classifiers are institution-specific
and often do not generalize well without modifications20 or local
retraining.24

Methodologically, the closest system to our current work uses “sil-
ver standard training sets,”25,26 with partially reliable labels, within a
machine learning pipeline to estimate phenotypes. While our frame-
work is similar, our phenotype library and evaluation focus on pheno-
types relevant for real-time clinical decision support, as opposed to
retrospective comparative effectiveness studies.

Contributions
In our previous work, phenotype estimators learned with partially reli-
able labels were shown to be comparable to those learned from man-
ually labeled examples while requiring a fraction of the time and
effort.27 This paper builds upon that work, expanding the number of
phenotypes and the types of data that can be handled without manual
processing. We also evaluate the effect of time and the relative impor-
tance of different data types on prediction accuracy in a way that sim-
ulates the intended use of estimated phenotypes for real-time clinical
decision support.

As a first step in assembling a comprehensive phenotype library
intended for real-time use in clinical decision support, we built 42 clin-
ical phenotypes. The methodology was validated on 8 clinical-state
variables in an emergency department setting, comparing learned
phenotype estimators against prospectively gathered gold-standard la-
bels. While our previous work only focused on the patient record as it
appeared at discharge time, we demonstrate that the estimators per-
form reliably over the entire course of the patient visit, and learn to ex-
tract information from all parts of the patient record as they become
available in real time.

METHODS
Learning phenotype estimators from imperfect labels
In this work, we employed the semi-supervised “Learning with
Anchors”27 method for phenotype learning, which we review briefly
here. The method uses “anchor” observations, observations that sat-
isfy 2 key conditions, to learn a phenotype estimator.

The first condition is high positive predictive value. If an anchor is
present, then the patient should almost always have the phenotype.
For example, the phrase “from nursing home” is a highly reliable indi-
cator that the patient lives in a nursing home. Although anchors must
have high positive predictive value, they do not need to have high sen-
sitivity. For example, there are many different ways to say “from nurs-
ing home,” so naively searching for that phrase would miss many
cases. This is rectified by a later step in the learning procedure.

The second condition is conditional independence. This is a formal
condition that requires that the patient’s phenotype is the best predic-
tor of whether or not the anchor is present in the medical records and
that no other data in the record would improve the prediction if the pa-
tient’s phenotype were already known.

In practice, we tried to choose anchors that minimized the violation
of conditional independence. For text anchors, we censored 3 words

before and after the anchor word to avoid violations of conditional in-
dependence that come from the short-range word dependencies of
natural language.

Specifying anchors is a manual step because domain expertise is
required to identify observations that satisfy the 2 anchor conditions.

After a domain expert specifies the anchors, they are used to build
an imperfectly labeled dataset that is passed to a noise-tolerant ma-
chine learning algorithm which learns a more complex decision rule to
estimate the phenotype. As noted above, the anchors themselves do
not necessarily make good phenotype estimators on their own, since
they are prone to false negative errors. However, observations which
satisfy the 2 conditions above are well suited for use as labels in the
Positive-Unlabeled learning algorithm of Elkan and Noto.28 Following
the Positive-Unlabeled learning algorithm,28 we build a censored data-
set in which all mentions of the anchors are removed, and learn logis-
tic regression classifiers to predict whether or not the anchor
observation was originally present in the patient record. A calibration
coefficient is also computed as the inverse of the average score of the
learned classifier on a held-out set of records that all have anchors.

The final phenotype estimator uses all the information in the pa-
tient’s record, including the anchors. As a first step, it checks if 1 or
more anchors are present. If an anchor is present, the record receives
a score of 1 because of the high positive predictive value condition. If
no anchor is present, the learned logistic regression classifier is ap-
plied to assign a continuous score to the patient from 0 to 1. That
score is then multiplied by the calibration coefficient. For ranking pur-
poses, we note that the calibration coefficient is not necessary, since
it does not change the ordering of scores.

All logistic regression models in this work were learned using the
scikit-learn package29 for Python with L2 regularization and 5-fold
cross-validation to choose appropriate regularization constants.

Optimal binning with anchors
Continuous features such as lab test values may have a nonlinear rela-
tionship with the phenotype variables. We also use anchors to learn
the optimal bin boundaries to convert continuous variables to binary
indicators. We follow the standard optimal binning procedure30 using
a decision tree to predict the presence or absence of the anchor from
a single continuous variable. The leaves of the decision tree are then
used to bin the continuous value into binary indicators. A different set
of bin boundaries is used for each phenotype estimation problem, as
the boundaries are learned specifically to be meaningful for the indi-
vidual estimation task. Decision trees in this work were learned using
the scikit-learn package29 for Python with a maximum of 10 leaves.

Study design
We conducted a retrospective observational study to build and test a
collection of clinical-state variable predictors. The study was approved
by our institutional review board.

Setting and selection of participants
The study was performed in a 55 000-visit/year trauma center and ter-
tiary academic teaching hospital. All consecutive emergency depart-
ment (ED) patients between 2008 and 2013 were included. Each record
represents a single patient visit. No patients were excluded, leading to
a total of 273 174 records of emergency department patient visits.

Data collection and preparation
As input for classification tasks, we built a patient feature vector with
binary features by concatenating 8 smaller sparse feature vectors
derived from the data sources described in Table 1.
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Medication History refers to the medications the patient was taking
prior to the ED visit as documented on the patient’s medication reconcili-
ation form. Medication Dispensing Record is documented by the hospi-
tal’s Omnicell and Pyxis medication dispensing systems. Generic
sequence numbers are associated with medications using the First
Databank drug database. Triage Assessment refers to the free-text nurs-
ing assessment documented at triage. Medical Doctor (MD) Comments
refers to the free-text scratch space used to track a patient’s course that
is updated in real time. All these data elements were recorded electroni-
cally at the same time that the data was collected.

The free-text fields, Triage Assessment and MD Comments, were
preprocessed with simple bigram and negation detection before being
represented as a binary bag-of-words. A more detailed description is
available in the Appendix. Features that appeared in fewer than 50 pa-
tient records were discarded, leaving a final concatenated feature vec-
tor with 21 103 dimensions.

Gold-standard phenotype labels
We evaluated the phenotype learning framework using 8 phenotypes
that had been identified as being important to support clinical and oper-
ational needs in the emergency department. For evaluation, we pro-
spectively collected gold-standard labels. Physicians were prompted
upon patient disposition to provide gold-standard responses to a rotating
set of research questions used in the emergency department. Questions
were active in the pool for variable lengths of time depending on their
utility for concurrent research projects. The phenotypes for which gold-
standard labels were collected are listed in Table 2. They included both
acute conditions, such as whether a cardiac etiology is suspected for
this patient visit, and historical phenotypes, such as whether a patient is
immunosuppressed. Responses were recorded on a Likert scale from 1
to 5. We took 4 and 5 to be positive and everything else to be negative.

The text in the Disposition Question column was shown to physi-
cians at the end of patient disposition. The parenthetical text was
shown if physicians selected a click-through option for additional in-
formation. N gives the number of labels collected, while Pos gives the
fraction of positively labeled cases.

Building a phenotype library
We built an initial library of phenotypes for public release. A single
emergency physician specified anchors for phenotypes using the

custom interactive anchor elicitation tool31 described in the “Learning
with Anchors” paper.27

The phenotypes were chosen to be of immediate relevance in the
emergency department. Our library focuses on conditions that could trig-
ger reminders or clinical decision support for determining a patient’s eligi-
bility for treatments (eg, anticoagulated, diabetes, history of liver failure),
requirements for special monitoring (deep vein thrombosis suicidal idea-
tion), or the existence of standardized protocols (employee exposure).

Phenotype evaluation
The area under the receiver-operator characteristic curve (AUC) was
evaluated using the prospectively gathered gold-standard labels.
When evaluating the supervised method, 10-fold cross-validation was
performed to allow for testing on the full set of gold-standard labeled
patients. Standard errors in AUC for anchor-based learning were eval-
uated using 100 bootstrap samples from the test set. Standard errors
in AUC in the supervised method were calculated across the folds of
the 10-fold cross-validation.

Real-time setting
To evaluate the effectiveness of phenotype prediction in a real-time
setting, we performed a retrospective analysis of patient records, ap-
plying our phenotyping algorithm to snapshots of the patient records
as they appeared 0, 30, 60, 120, 180, and 360 minutes after arrival to
the emergency department, as well as at the time of disposition from
the emergency department. We compared phenotype extraction using
classifiers learned from the “Learning with Anchors” framework27

Table 1: Features used to build binary patient description
vectors

Representation Dimension

Age Binned by decade 11

Sex M/F 2

Medication
History

Indicators by medication
generic sequence
number

1947

Medication
Dispensing
Record

279

Triage Vitals Binned by decision tree 77

Lab Results 2805

Triage Assessment Binary bag-of-words 7073

MD Comments 8909

Table 2: Phenotype variables used for evaluation

Phenotype Disposition Question N Pos

Cardiac – acute In the workup of this patient,
was a cardiac etiology
suspected?

17 258 0.068

Infection – acute Do you think this patient has
an infection? (Suspected or
proven viral, fungal, proto-
zoal, or bacterial infection)

62 589 0.213

Pneumonia – acute Do you think this patient has
pneumonia?

9934 0.073

Septic shock – acute Is the patient in septic
shock?

6867 0.020

Nursing home –
history

Is the patient from a nursing
home or similar facility?
(Interpret as if you would be
giving broad-spectrum
antibiotics)

36 256 0.045

Anticoagulated –
history

Prior to this visit, was the pa-
tient on anticoagulation?
(Excluding antiplatelet agents
like aspirin or Plavix)

1082 0.047

Cancer – history Does the patient have an ac-
tive malignancy? (Malignancy
not in remission, and recent
enough to change clinical
thinking)

4091 0.042

Immunosuppressed –
history

Is the patient currently
immunocompromised?

12 857 0.040
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with 200 000 patients against fully supervised classifiers trained using
5000 patients labeled with the gold-standard data. When training the
anchor-based classifiers, patients for which gold-standard labels were
available were removed from the dataset (full dataset N¼ 273 174)
and reserved for testing. Depending on the phenotype, these test sets
ranged in size from 1082 to 62 589 patients (see Table 2), leaving a
variable number of patients available for training. For simplicity of the
training pipeline, we used a fixed-size training set of 200 000 patients
for all phenotypes. Both the anchor-based classifiers and the gold-
standard classifiers were trained for each time step independently, us-
ing only the data available up to that time, yielding 7 different classi-
fiers for each method.

Performance breakdown by data type
To better understand the contributions of different data types in the
EMR, we trained classifiers using only subsets of the EMR data types.
In all cases, we allowed the classifiers to use age, sex, and triage vi-
tals, and then measure performance using AUC at disposition time
with classifiers that additionally used medication history, medication
dispensing record, lab results, triage text, and MD comments. We also
looked at classifiers that used all structured data (medication his-
toryþmedication dispensing recordþ labs) and all free-text data (tri-
age textþMD comments), and finally compared to the classifiers that
used all of the above-mentioned data types.

RESULTS
Building a phenotype library
Each phenotype was initially specified by a small number of anchors,
which were used to learn logistic regression classifiers as described in
the Methods section. Anchors and highly weighted terms learned by
the classifiers are shown for representative phenotypes in Tables 3
and 4. The full list of phenotypes is available in Appendix 1. Building
each phenotype took approximately 10 minutes of physician time.

Phenotype evaluation in real-time setting
For all of but one of the phenotypes (nursing home), the “Learning with
Anchors” framework outperforms supervised training on a set of manu-
ally collected gold-standard labels. Figure 1 shows a comparison be-
tween the 2 methods for learning phenotypes as a function of time.
Some conditions are easier to detect than others, with highly acute condi-
tions like pneumonia and septic shock reaching AUC values above 0.95.

Changes to a patient’s EMR happen multiple times over the course
of a patient visit and different pieces of information become available
at different times. Medication reconciliation usually happens in the first
30 minutes of a visit and lab results tend to become available between
1.5 and 2 hours after patient arrival. However, a significant number of
updates to these fields occur after that peak time. MD comments and
dispensed medications are constantly being updated. The median visit
is about 5 hours in length. Figure 2 shows the distribution of when
changes occur in the EMR, accumulated over 20 000 patient visits.

At the beginning of the patient’s visit, phenotype decisions are
dominated by the triage time information from age, vitals, and triage
note. As time progresses, MD comments, labs, and dispensed medi-
cations become more important in determining the patient’s pheno-
type. Figure 3 shows features picked up by the learned classifiers as
time progresses, using the pneumonia phenotype as an example. The
stacked bars show the relative influence of each data type on classifi-
cation (see Appendix 1 for details of influence measure). For the pneu-
monia phenotype, medication history is the least important factor; for
other phenotypes, such as anticoagulation, it is much more prominent.
The text on Figure 3 shows features whose weights have significantly

Table 3: A selection of the 42 phenotypes built as part of this
ongoing project. Each phenotype is defined by its anchors,
which can be specified as ICD9 codes, medications (history or
dispensed), or free text. When a large number of anchors are
specified, only a selection are shown. For display, medications
are grouped by extended therapeutic class.

Phenotype Data
Source

Anchors

Anticoagulated
(history)

C 790.92 abnormal coagulation profile

C E934.2 ADV EFF anticoagulants

C V58.61 long-term use anticoagulant

H Anticoagulants – Coumarin

H Thrombin Inhibitor – selective direct
and reversible

D Factor IX preparations

T FFP

Diabetes
(history)

C 250 diabetes mellitus

H Diabetic therapy

Liver (history) C 571 chronic liver disease and cirrhosis

C 572.2 hepatic encephalopathy

T Cirrhosis

T ESLC

T HCV

T Hep c

Allergic
reaction
(acute)

C 995.3 allergy, unspecified

T Allergic reaction

T Allergic rxn

Cholecystitis
(acute)

C 574 cholelithiasis

C 575.0 acute cholecystitis

Deep vein
thrombosis
(acute)

C 453.40 acute venous embolism and
thrombosis of unspecified deep vessels
of lower extremity

C 453.41 acute venous embolism and
thrombosis of deep vessels of proximal
lower extremity

Employee
exposure
(acute)

T Employee exposure

T Needlestick

C E920.5 hypodermic needle

Epistaxis (acute) C 784.7 epistaxis

Laceration (acute) T Lac

T Laceration

Suicidal
ideation
(acute)

C V62.84 suicidal ideation

T SI

T Suicidal ideation

Each phenotype is defined by its anchors, which can be specified as ICD9 codes,
medications (history or dispensed), or free text. When a large number of anchors are
specified, only a selection are shown. For display, medications are grouped by
extended therapeutic class.

D Medication dispensing record H Medication history C ICD9 codes T Medical
Text
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increased, with the position on the x-axis indicating approximately
when they start becoming important for prediction.

Performance breakdown by data type
Figure 4 shows change in AUC from baseline as a function of the data
types used for classification. The baseline uses only age, sex, and vital
signs.

For phenotypes based on patient history (immunosuppressed,
nursing home, anticoagulated, and cancer), medication history is the
most important structured data type, and structured data is more im-
portant than free text for all but the cancer phenotype.

For phenotypes that represent acute problems (infection, pneumo-
nia, cardiac etiology, and septic shock), the medication dispensing re-
cord is the most useful data type among the structured records, and
free text tends to be more informative than structured data. Septic
shock is an exception, where the medication dispensing record is
more informative than the free text.

For all phenotypes, combining free text and structured data was
more informative than either of the 2 on its own.

DISCUSSION
The classifiers presented in Table 4 use both structured and unstruc-
tured data to determine whether the patient has the phenotype, and

Table 4: Continued

Phenotype Data
source

Observed Feature Weight

V Heart rate (61.5–66.5) 0.72

M ID 0.72

Allergic
reaction

D Diphenhydramine 1.43

A Benadryl 1.13

D Methylprednisolone
sodium succ

1.09

D Diphenhydramine 1.05

D Famotidine 0.89

M Benadryl 0.88

A Neg hives 0.86

A Throat 0.79

D Prednisone 0.73

A Itching 0.72

A Neg SOB 0.71

A Swelling 0.7

A Neg rash 0.66

D Famotidine (PO) 0.63

A IV 0.63

A Allergy 0.58

A Feeling 0.52

A Ate 0.52

A Hives 0.51

A Rash 0.51

A Triage Assessment M MD Comments H Medication History
D Medication Dispensing Record V Triage Vitals L Lab Results

Table 4: Top 20 weighted terms in the classifiers for 3 of the
learned phenotypes. These classifiers are learned using
medical records as they appear at time of disposition from
the emergency department.

Phenotype Data
source

Observed Feature Weight

Diabetes
(history)

M DM 2.97

H Blood glucose testing 2.92

M DM2 2.23

L Glucose (>266.5) 2.1

D Metformin (Glucophage) 1.98

M IDDM 1.87

L Glucose (198.5–266.5) 1.8

M DMII 1.72

M Diabetes 1.56

H Fingerstick lancets 1.47

M Diabetic 1.42

H Blood glucose testing 1.25

A Diabetic 1.22

A Hypoglycemia 1.22

A IDDM 1.19

A BS 1.16

D Insulin HumaLog 1.16

L Glucose (175.5–198.5) 1.13

H Tricor 1.1

M DM1 1.1

Employee
exposure

A Needle 1.9

V Pain (<0.05) 1.47

D Lamivudine-Zidovudine
(Combivir)

1.41

A OR 1.36

A Stuck 1.13

A Exposure 1.06

A Neg bleeding 1

A Washed 0.98

A Went 0.96

V Temp (98.98–99.21) 0.95

A Cath 0.94

A Epi 0.93

A Glove 0.91

A Dirty 0.81

A Sq 0.8

A Thumb 0.77

M Patient 0.77

M Needle 0.73

(continued)
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Figure 1: Comparison of performance of phenotypes learned with 200 000 unlabeled patients using the semi-supervised anchor based
method, and phenotypes learned with supervised classification using 5000 gold-standard labels. Error bars indicate 2 * standard error.
For anticoagulated and cancer, there were not a sufficient number of gold-standard labels to learn with 5000 patients, so the fully super-
vised baseline is omitted.

Figure 2: Changes to patient records over time. The time of every change to the patient record is recorded (measured in minutes from ar-
rival) and a non-parametric kernel density estimator is used to plot the distribution of times at which changes occur.
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generalize beyond the initial anchors input by the physician in Table 3.
For example, the classifiers learn to look for appropriate medications
used to treat for allergic reaction (e.g., steroids like prednisone and
methylprednisolone, and antihistamines like diphenhydramine and
famotidine). They also naturally pick up on variations of free text and
statistical synonyms without having to specify this information manu-
ally. For example, in the classifier for diabetes, we see DM, DM2,
DMII, and in the classifier for cholecystitis (not shown in Table 4) we
see both surg and surgery.

The classifier for employee exposure makes heavy use of textual
terms, each of which is not strongly indicative on its own, but they of-
ten appear together in the narrative used to determine the risk of HIV
and hepatitis transmission after an employee exposure, including the
location (thumb), circumstance (operating room, cath), mechanism of
injury (needle), barrier (glove), and decontamination (washed).

The statistical model sometimes puts more weight on features that
might not at first be intuitive. For example, the negation of hives is in-
dicative of allergic reaction. Although this is counterintuitive from a
clinical perspective, this does make sense from a statistical perspec-
tive because physicians are only likely to document the absence of
certain findings when it is pertinent to a particular condition. In medi-
cine, these terms are known as pertinent negatives and often matter
as much as pertinent positives.

Nursing home status is well detected by structured data, particu-
larly by the patient’s medication history (see Figure 4), since patients
from nursing homes are more likely to have very long and detailed
medication lists. This is another example of a cue picked up by statis-
tical learning, but which would be difficult to specify a priori as a man-
ual rule.

The plots in Figure 1 show that classification becomes more accu-
rate as the patient visit progresses, which makes sense since more in-
formation becomes available. The more general phenotypes like
infection and cardiac etiology show the least improvement over the
course of the visit, as they are often clear from the patient’s initial
complaint and presentation. In fact, we find that the single most im-
portant data type in determining cardiac etiology is the free text written
at triage. More specific diagnoses, like pneumonia, become increas-
ingly easy to determine as the visit continues. The progression of clas-
sification performance generally mirrors when significant data items
become available. For example, determining whether a patient is on
anticoagulation therapy improves dramatically 30 to 60 minutes after
triage, corresponding to the times when medication history and lab re-
sults become available, as seen in Figure 2.

The gaps between our method and supervised training shown in
Figure 1 are larger towards the beginning of the visit when there is
less information available. By learning weights in a statistical classifier
and using a large amount of data, we allow for evidence to

accumulate (eg, swelling is indicative of allergic reaction, but can oc-
cur for many reasons), making a continuous valued prediction based
on the accumulated evidence rather than making decisions based on
individual words or phrases in the note. This advantage is more pro-
nounced toward the beginning of the patient’s visit, when there are
fewer obvious cues to pick up on. Clinical decision support is most
useful early in a patient’s emergency department course, when timely
interventions can change clinical trajectories and before critical deci-
sions are made. The performance improvement between our method
and supervised training is therefore critical to our intended use case of
real-time clinical decision support.

The important data types for classification depend strongly on the
phenotype, so building a wide range of phenotypes requires a diversity
of data sources. We find that free-text data is generally useful in clas-
sification, improving accuracy in all of the phenotypes that we studied.
MD comments are generally more useful than triage information, once
available. This is not surprising, as the MD comments tend to be lon-
ger and more detailed than the triage note, describing not only the pa-
tient’s complaint, but also their pertinent history and physical, as well
as steps taken in the diagnostic and treatment plan.

Important structured data tends to be repeated in the MD comments,
so using only free text, without structured data beyond demographics and
triage vitals, tends to perform well. One important exception to that trend
is determining whether a patient is anticoagulated, which represents an
important piece of background information regarding the patient but may
not be pertinent to the patient’s current illness. Nursing home status is
better detected from the triage note, as it is often included in the triage as-
sessment and then dropped in the MD comments if it is deemed irrelevant
to the patient’s current problem.

Limitations and further work
In this work, we only consider data from a single hospital, and even
though we were able to specify 42 phenotypes, we were only able to
quantitatively evaluate 8 of them. In addition, our evaluation was per-
formed retrospectively and disconnected from a specific clinical deci-
sion support context, making it difficult to assess the effectiveness of
these predictors in clinical practice. Data came from a single hospital
emergency department, and testing portability of phenotype definitions
is a clear next step. In our framework, phenotypes are defined only by
anchor variables and then classifiers are learned on each institution’s
data independently. We expect this method will allow each institution
to learn classifiers that are appropriate to their patient population and
local linguistic features.

We currently utilize these 42 phenotypes on every patient in the emer-
gency department to power a multitude of real-time clinical applications
such as clinical decision support, research eligibility screening, contextual
clinical pathways, contextual order sets, contextual information retrieval,

Figure 3: Influence and highly changing features for the pneumonia phenotype extractor as a function of time.
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Figure 4: Additive change in AUC from baseline for phenotype extraction as a function of the features used. The baseline phenotype ex-
traction uses only features from age, sex, and triage vitals and its value is indicated for each phenotype on the y-axis label. In each plot,
the bars on the left use structured data while the center bars use free-text data. Hatched lines represent a combination of features. A
star is placed below the single feature that has the highest performance.
From left to right, the classifiers used:
Med – Medication history (prior to visit)
Pyx – Medication dispensing record (during visit)
Lab – Laboratory values
Strct – All structured data (Med þ Pyx þ Labs)
Tri – Triage nursing text
MD – Physician comments
Txt – All Text (Tri þ MD)
All – All features (Structured þ Text)RESEARCH
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and contextual discharge instructions. A natural next step would be to
evaluate the real-life impact of these applications on clinical care.

In this paper we showed how to learn phenotypes using a small
amount of input from domain experts in the form of anchor variables.
However, as these phenotypes are put to use driving IT applications,
they can be automatically refined through usage, either explicitly by
correcting predictions made by the algorithm, or by taking actions like
enrolling a patient in a care pathway or using a standardized order set
that implies agreement or disagreement with the model’s predictions.

CONCLUSION
Every patient has a unique history and presentation that must be con-
sidered in providing treatment. Currently, that information is captured
in the electronic medical record in a form that is difficult to use in ap-
plications such as clinical decision support. As our collective under-
standing of medicine becomes more precise, we would like to
represent all of the information in the EMR, including both structured
and unstructured data, in a fine-grained manner that can be used to
provide personalized recommendations and clinical decision support.

We demonstrate a scalable method of building data-driven pheno-
types with a small amount of manual input from domain experts in the
form of anchor variables that can be shared widely among institutions.
The phenotypes are then implemented as classifiers that can be sta-
tistically learned from large amounts of clinical data at each institution.
We show that phenotypes learned in this way are comparable to phe-
notypes learned with manually identified cases and controls for use in
a real-time setting, and allow us to easily scale our collection of
phenotypes.
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