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Normalizing clinical terms using learned
edit distance patterns
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ABSTRACT
....................................................................................................................................................

Background Variations of clinical terms are very commonly encountered in clinical texts. Normalization methods that use similarity measures or
hand-coded approximation rules for matching clinical terms to standard terminologies have limited accuracy and coverage.
Materials and Methods In this paper, a novel method is presented that automatically learns patterns of variations of clinical terms from known
variations from a resource such as the Unified Medical Language System (UMLS). The patterns are first learned by computing edit distances be-
tween the known variations, which are then appropriately generalized for normalizing previously unseen terms. The method was applied and eval-
uated on the disease and disorder mention normalization task using the dataset of SemEval 2014 and compared with the normalization ability of
the MetaMap system and a method based on cosine similarity.
Results Excluding the mentions that already exactly match in UMLS and the training dataset, the proposed method obtained 64.7% accuracy on
the rest of the test dataset. The accuracy was calculated as the number of mentions that correctly matched the gold-standard concept unique
identifiers (CUIs) or correctly matched to be without a CUI. In comparison, MetaMap’s accuracy was 41.9% and cosine similarity’s accuracy was
44.6%. When only the output CUIs were evaluated, the proposed method obtained 54.4% best F-measure (at 92.1% precision and 38.6% recall)
while MetaMap obtained 19.4% best F-measure (at 38.0% precision and 13.0% recall) and cosine similarity obtained 38.1% best F-measure (at
70.3% precision and 26.1% recall).
Conclusions The novel method was found to perform much better than the MetaMap system and the cosine similarity based method in normaliz-
ing disease mentions in clinical text that did not exactly match in UMLS. The method is also general and can be used for normalizing clinical terms
of other semantic types as well.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Clinical terms are found in clinical text with several variations. These
variations could be because of morphological alternations or differing
writing conventions or even because of typographical errors. For
example, the term “haemoglobin” may be found in clinical text with
an alternate spelling “hemoglobin” or with a typographical error
“heamoglobin.” Similarly, “Addison’s disease” may be found as
“Addison Disease,” “metastatis” as “metastases,” “cyanotic” as
“cyanosis,” “z-plasty” as “z-plasties,” etc., which are examples of
morphological variations. Due to variations, clinical terms often do not
exactly match the terms in standard terminologies or ontologies, which
impedes their automatic coding and normalization process for down-
stream applications. Although terminology resources such as the
Unified Medical Language System (UMLS)1 provide multiple variations
and synonyms for most of the clinical terms, they do not exhaustively
cover them. For example, we found that in the dataset of SemEval 2014
Task 72 out of total 13 845 disease and disorder mentions whose con-
cepts were known to be present in UMLS, 23.7% of them could not be
mapped to any of the concepts in UMLS through exact matching.

The task of matching a given term into a standard terminology is
also called normalization. Some existing systems that normalize clini-
cal terms do so by applying manually developed string-matching or
approximation rules.3–6 However, manually encoding all possible vari-
ations of clinical terms is not only a formidable task but typically also
results in limited accuracy and coverage.7 For example, in the experi-
mental results of this paper we show that MetaMap system,8 which
internally uses such rules for normalization of clinical terms, not only

missed mapping many terms to their correct concepts in UMLS but
also erroneously mapped many other terms to incorrect concepts.

For normalizing multi-token clinical terms to their concepts in stan-
dard terminology, some existing systems use a method similar to the
document matching method used in information retrieval.9 The clinical
terms are treated like documents and their tokens as document terms,
and then a similarity metric, typically cosine similarity, is used to
match them with the standard terminology.10–12 Although this is a rea-
sonable approximate matching method, it has obvious shortcomings.
First, token-based similarity is not always suitable for matching clinical
terms. For example, “left ventricular cardiac dysfunction” is very dif-
ferent from “ventricular cardiac dysfunction,” but the token-based
similarity between the two terms will be very high. Second, it is easily
affected by morphological and typographical variations which are very
common in clinical terms. For example, the method is unlikely to
match “calculous pancreas” to “calculus pancreas” which, in fact, re-
fers to the same concept.

The objective of the research presented in this paper was to design
and evaluate a novel method for normalizing clinical terms based on
rules that are automatically learned from known variations of clinical
terms. To the best of our knowledge no one has presented a method
that automatically learns normalization rules for clinical terms.

Our method of learning normalization rules is based on edit dis-
tance, which is a measure of typographical similarity between two
terms. We used a particular type of well-known edit distance called
Levenshtein distance.13 It measures the minimum number of edit
operations of insertions, deletions, and substitutions that are needed
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to convert one term into another term. We call the sequences of such
operations edit distance patterns. Our approach first finds edit
distance patterns between every pair of terms in UMLS that represent
the same concept. Such patterns are then generalized by finding the
commonality between them. However, over-generalization is avoided
by measuring how often they lead to correct or incorrect normalization
of clinical terms within UMLS. The edit distance patterns thus learned
and validated become our normalization rules. The entire method does
not require any human annotation effort and only utilizes existing re-
sources such as UMLS. Although edit distances and other measures
have been used before for normalization by computing similarity be-
tween terms and then using ad hoc threshold values to determine if
they match,14,15 our method uses edit distances in a very different
way, namely to learn patterns that capture known variations between
clinical terms using a resource such as UMLS. Learning methods
based on edit distances have been used before for duplicate detection
in database records,16 but to the best of our knowledge, no one has
used an approach that learns patterns based on edit distances.

We evaluated our method using the dataset of Task 7 of SemEval
2014,2 which was built on the dataset of Task 1 of ShARe/CLEF
eHealth Evaluation Labs.17,18 The dataset consists of disease and dis-
order mentions in clinical text and their mappings to the SNOMED
CT19 part of UMLS. We compared the performance of our method with
that of the well-known MetaMap system as well as with a method
based on cosine similarity and found that our method performs best.
Although our method was evaluated on a dataset of only diseases and
disorders due to its availability, the method itself is general enough
and can be applied to learn normalization rules for clinical terms of
other semantic types as well.

While Subtask A of SemEval 2014 Task 7 was extraction of clinical
terms from clinical text and Subtask B was their normalization, the fo-
cus of the presented research was only on normalization of clinical
terms (i.e., only Subtask B) and not their extraction for which several
machine learning based methods have been already developed.20–22

Since entity extraction process is typically specific to a particular se-
mantic type (e.g., extracting disease and disorder mentions), we also
do not consider disambiguation of clinical entities as part of the nor-
malization process. Thus the proposed method expects clinical terms
already extracted from text for a specific semantic type which it then
maps to a standard terminology. This is how the Subtask B of
SemEval 2014 Task 7 was also defined. Also, when we compare our
method to MetaMap, we are only comparing against MetaMap’s nor-
malization ability out of several of its functionalities.

METHODS
This section describes our novel method for automatically generating
normalization rules for clinical terms. In order to learn these rules, the
only resource our method needs is a list of clinical terms and their
known variations or synonyms. We used UMLS as our resource. In this
section, we first describe how the rules are generated, then how they
are validated, and finally give an efficient algorithm for the entire
process.

Edit Distance Patterns and Their Generalizations
Our method first computes Levenshtein edit distances13 between every
pair of clinical terms that represent the same concept in UMLS (or its
subset of a particular semantic type if normalization rules are to be for
that semantic type). The Levenshtein edit distance computes the mini-
mum number of edit operations of insertions, deletions, and substitu-
tions needed to convert one term into another. For example, the term
“cyanotic” can be converted into term “cyanosis” in minimum of two

steps, by substituting the “t” by “s” and the last “c” by “s.” Hence the
edit distance between them is two. There is a fast dynamic program-
ming algorithm to compute edit distances.13 That algorithm also gives
the sequence of minimum edit distance operations needed to convert
one term into another. For the above example, the sequence will be
“BEGIN SAME c SAME y SAME n SAME o SUBSTITUTE t/s SAME i
SUBSTITUTE c/s END”, which is illustrated in Figure 1. In the paper, we
will call such a sequence of edit operations an edit distance pattern.
This is the form in which our method learns normalization rules, and in
the paper we will use the two terms alternatively. Note that we have in-
cluded BEGIN and END symbols at the beginning and at the end of the
pattern; their utility will be described shortly. We consider edit distance
patterns only at the character level and not at the word level because
edit operations at the word level can always be represented using edit
distance patterns at the character level.

An edit distance pattern thus generated between two terms can
only be used to convert the first term into the second term and as such
cannot be applied to any other new term. Hence edit distance patterns
need to be generalized before they can be applied to other terms. The
generalization should capture the common patterns of variations be-
tween clinical terms. Given two edit distance patterns, we define gen-
eralization between them as the longest contiguous common pattern
that includes all the edit operations of insertions, deletions, and substi-
tutions. Thus the generalization process only generalizes over “SAME,”
“START,” and “END” steps occurring outside of the edit operations. For
example, the generalization of the two edit distance patterns, one for
converting “cyanotic” to “cyanosis” and another for converting “throm-
botic” to “thrombosis”, will be the edit distance pattern “SAME o
SUBSTITUTE t/s SAME i SUBSTITUTE c/s END”. This is illustrated in
Figure 2. This pattern can apply only to terms that end with “otic” and
upon application will convert them to end with “osis.” Hence this pat-
tern essentially captures the variation that if a term ends with “otic”
then it can be normalized to a term that ends with “osis” rest of the
term being the same. Using this generalized edit distance pattern, one
will thus be able to normalize, say, “fibrotic” to “fibrosis” even if “fi-
brotic” may not be mentioned in a resource like UMLS.

The above example also illustrates the utility of “END” symbol,
which restricts the edit distance pattern to match only at the end of a
term and not somewhere in between. Similarly, “BEGIN” symbol helps
to capture variations that are specific at the beginning of terms.

Validating Edit Distance Patterns
Our method further generalizes the generalized edit distance patterns
in the same way by finding the commonality between them in order to
obtain patterns with even wider applicability. However, not all the gen-
eralized patterns thus obtained may be good and some may, in fact,
change the meaning of the terms when applied. This is particularly
true if the patterns get over-generalized—for example, a pattern that
says change every “t” to “s.” Hence it is very important to also vali-
date the edit distance patterns. Our method validates them by applying
them to other terms in UMLS (or its subset of a particular semantic
type) and separately counting how often the converted term is a valid
or an invalid variation of the original term. Specifically, when a pattern
is applied to a UMLS term and the converted term is also in UMLS
with the same concept unique identifier (CUI), then the pair of terms is
counted as a positive example. However, if the converted term is in
UMLS but it has a different CUI (meaning it is a different concept),
then the pair of terms is counted as a negative example. If the con-
verted term does not match in UMLS then the pair is neither counted
as a positive nor as a negative example.
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The number of positives and negatives thus computed for a pattern
indicate how accurate the pattern is in generating correct variations of
terms for normalization. Additionally, the more the number of positives
the more common is the variation that the pattern captures. Patterns
with several positives and very few or no negatives are thus very good
patterns. We measure goodness of a pattern in terms of its score,
which is computed as p/(pþ nþ 1), where p is the number of posi-
tives and n is the number of negatives found for the pattern. This is a
simple form of the well-known m-estimate formula.23 In our experi-
ments, we use the score of a pattern as a measure of its confidence
in normalizing clinical terms.

The Complete Efficient Algorithm
Given the vastness of UMLS, a naı̈ve implementation of the above proce-
dure for finding edit distance patterns, generalizing them, and counting
their positive and negative examples will be computationally almost in-
tractable. Hence we developed an efficient algorithm which is described
in this subsection and in the Appendix A. Before we begin, we define a
term that will be useful in describing the algorithm. We will call the con-
tiguous part of an edit distance pattern from its first edit operation (i.e.,
insert, delete, or substitute) to its last edit operation as edit-only pattern.
For example, for the edit distance pattern “START SAME c SAME y
SAME n SAME o SUBSTITUTE t/s SAME i SUBSTITUTE c/s END,” the
edit-only pattern will be “SUBSTITUTE t/s SAME i SUBSTITUTE c/s.”
Note that an edit-only operation could include “SAME” symbols inside it.

Our algorithm exploits the following observations to make the com-
putation efficient. The first observation is that an edit distance pattern
and all its possible generalizations share the same edit-only pattern.
This is because of the way we define generalization of two patterns as

the longest common contiguous pattern that includes all the edit oper-
ations. To exploit this observation, our algorithm, in fact, begins with
an edit-only pattern and then specializes it on left and right sides. The
second observation is that a positive (or negative) example of an edit
distance pattern will also be a positive (or negative) example of all its
generalizations. This is because if a pattern applies to a term and con-
verts it into another term, then this will be true for any of its generali-
zations as well. Hence our algorithm computes positive and negative
examples only for specialized patterns from which positive and nega-
tive examples of more general patterns are determined. The final ob-
servation is that when edit distance pattern is computed between two
terms, one can also know if the term pair constitutes a positive exam-
ple or a negative example for that pattern based on whether the two
terms represent the same concept or not. Our algorithm exploits this
observation and simultaneously computes edit distance patterns as
well as positive and negative examples. The pseudo-code of our algo-
rithm and its full description is in Appendix A.

RESULTS AND DISCUSSION
We implemented the algorithm described in the previous section and
ran it on the concepts of UMLS restricted to disease and disorder se-
mantic type in order to generate normalization rules specific to that
semantic type. We also restricted to only the concepts that occur in
Systematized Nomenclature of Medicine—Clinical Terms (SNOMED
CT) as is the case with the SemEval 2014 dataset that we used for
evaluation. However, the descriptions (terms representing the con-
cepts) were not restricted to SNOMED CT and could have come from
any other source. There were a total of 88 638 concepts and 88 109
of them had at least two descriptions. We restricted patterns to have

Figure 1: An illustrative example showing the edit distance pattern that converts the term “cyanotic” into “cyanosis.”

Figure 2: An illustrative example of generalization of two edit distance patterns. Generalization is defined as the longest contiguous com-
mon pattern that includes all the edit operations of insertions, deletions, and substitutions.
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at most 10 as the length of their edit-only patterns because patterns
longer than that rarely apply to new terms. We also required them to
have at least 3 positives, and more positives than negatives. Our pro-
gram learned a total of 11 832 edit distance patterns, which form our
normalization rules. All these patterns and our code are available on
our web-site http://www.uwm.edu/~katerj/normalize for download.

A few illustrative patterns are shown in Table 1. The first two pat-
terns picked up the equivalence between American and British spellings,
but note that the second pattern is more general than the first pattern
and hence also has more positive as well as more negative examples.
The first pattern has no negative example—that is, it never led to any
incorrect normalization when validated within UMLS, and its score is
consequently higher than the score of the second pattern. Thus, al-
though the second more general pattern will be applicable more often
than the first pattern, but the system will have higher confidence in nor-
malizing using the first pattern whenever it applies. The third and fourth
patterns capture two common typographical variations in the context of
other characters. The fifth pattern tells that “of” can be inserted after
“hy.” The pattern that simply inserts “of” without any context had 205
negative examples and hence was not a good pattern, but interestingly,
this pattern has no negative example because of the context of “hy.”
Such types of rules with contexts are not easy for humans to create but
our method is capable of learning them automatically from data. Finally,
the last illustrative pattern depicts a very specific conversion—if “alco-
hol” is present in a clinical term, then it can be changed to “alcoholic”
for normalization. For example, it will normalize “alcohol liver cirrhosis”
to “alcoholic liver cirrhosis.” Although our edit distance patterns are
character-based, the last two examples show that these patterns are in-
herently capable of editing at the word level.

We applied our normalization rules to the dataset of SemEval 2014
Task 7B for normalizing disease and disorder mentions. The normali-
zation rules were first sorted in decreasing order of their scores and
were then applied in that order. If a normalization rule applied and the
converted term was present in the SNOMED CT part of UMLS, then the
corresponding CUI was output with the rule’s score as its confidence.
If none of the rules worked and if the term was an abbreviation ac-
cording to a standard list of clinical abbreviations,24 then its full form
was considered. If the rules did not apply even on the full form then
the output was given as CUI-less.

Given that the focus of this paper was only on the normalization
task (Task 7B), we evaluated the performance of our system indepen-
dent of the extraction task (Task 7A) by using the gold-standard

dataset of disease and disorder mentions already extracted from text.
Although we participated in both the subtasks of SemEval 2014 Task
7,25 in this study we could not compare normalization performance of
our system directly with that of the other teams. This is because in
that competition the normalization task was not separately evaluated
but was evaluated in conjunction with the extraction task.2 We used
the MetaMap8 system (2013 version) and a method based on cosine
similarity10,11 instead for comparison. We used MetaMap’s options to
restrict its output concepts to SNOMED CT and of disease and disorder
semantic type. Given a term, MetaMap gives a list of UMLS concepts
that it determines to be matching the term. This list is given in a de-
creasing order of its confidence in the matches. For an input term, we
take the CUI of the first concept in the list as the normalization output
of MetaMap, if the list is empty then the output is taken as CUI-less
unless it is an abbreviation in which case its full form is considered.

We implemented a cosine similarity based method which first toke-
nized all the terms and removed some common morphological
suffixes.26 We did not remove prefixes because they often change the
meanings of the terms. The CUI of the UMLS concept description that
had the highest cosine similarity score with the input term was regarded
as the output of the method. We again restricted to concepts of
SNOMED CT and of disease and disorder semantic type although the de-
scriptions of the concepts could be coming from other sources. While
the method based on learned patterns as well as MetaMap did not out-
put any CUI if no suitable match was found, the cosine similarity based
method would almost always output some CUI even when the similarity
score was close to zero which could degrade its performance. To pre-
vent this, we set a minimum cosine similarity threshold of 0.7, which
was determined through a pilot experiment using ten percent of the en-
tire data and was found to maximize F-measure of matched CUIs. If a
term failed to match above the threshold then its full form was consid-
ered if it was an abbreviation; otherwise, it was declared CUI-less.

We did not use term-frequency-inverse-document-frequency
(TF-IDF) statistic with our cosine similarity method because although
TF-IDF is meaningful and effective for document matching,9 it is not
suitable for clinical term normalization for two reasons. First, TF is
meant to take into account multiple occurrences of tokens in a docu-
ment, but clinical terms are very short and rarely contain multiple oc-
currences of tokens, hence TF is not very useful for clinical term
normalization. Second, the purpose of IDF is to down-weigh commonly
occurring tokens across documents, but in the context of clinical term
normalization the commonly occurring tokens, like “non,”

Table 1: A few illustrative examples of a total of 11 832 automatically learned edit distance patterns.

Learned Edit Distance Pattern Positive
Examples

Negative
Examples

Comments

1 SAME i SAME o INSERT u SAME r SAME space 841 0 Change some American spellings to British (“ior ”! “iour ”)

2 SAME o INSERT u SAME r 5166 45 Change American spellings to British (“or”! “our”)

3 BEGIN SAME h INSERT a SAME e SAME m SAME
a SAME t SAME o SAME m

95 0 Variation: “hematom . . . ”! “haematom . . . ”

4 SAME i INSERT a SUBSTITUTE c/s 25 3 Example: “hyperglycemic”! “hyperglycemias”

5 SAME h SAME y INSERT space INSERT o INSERT f 128 0 Add “ of” following “hy”; Example: “exstrophy urinary bladder”!
“exstrophy of urinary bladder”

6 BEGIN SAME a SAME l SAME c SAME o SAME h
SAME o SAME l INSERT i INSERT c

25 0 “alcohol”! “alcoholic”
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“congenital,” “acute,” “pre,” “pain,” “benign” etc., are very important
and always change the meaning of a clinical term. Hence common to-
kens should not be down-weighed for clinical term normalization.

Table 2 shows the results. The results of learned patterns, cosine
similarity and MetaMap are denoted by “LP,” “CS,” and “MM,” re-
spectively. The first row shows the results obtained on the training
and development set (note that this data was not used to train our
method which used only UMLS for training). The next row shows re-
sults obtained on the test set while the last row shows results on the
test set after excluding the mentions that already exactly matched in
the training and development set. In all of these datasets, the men-
tions that already exactly matched in UMLS (also considering their full
forms if the terms are abbreviations24) were first excluded because
those are trivial cases of normalization.

The second major column of Table 2 shows accuracy which is
measured as the percentage of terms for which the output was correct
(whether CUI or CUI-less). We also separately evaluated the CUIs be-
cause this measures the ability of the systems to assign correct CUIs to
terms known to be present in the terminology. All methods also give
confidence scores to their output CUIs. Our method’s confidence is
same as the score of the normalization rule that was used. We used
these scores to plot precision-recall curve by varying the threshold of
confidence and measuring precision (fraction of output CUIs that are
correct) and recall (fraction of CUIs in the dataset the system correctly
outputs). We also measure best F-measure (harmonic mean of precision
and recall) along this curve. The third major column of Table 2 shows
the best F-measures obtained by the three methods over their preci-
sion-recall curves, while the next two major columns show precisions
and recalls corresponding to the best F-measures. The precision-recall
curves corresponding to the last row of Table 2 are shown in Figure 3
(the curves are qualitatively similar for the other rows).

As is evident, our method of learned patterns performs better than
MetaMap as well as cosine similarity on all the datasets and using all the
evaluation measures. Figure 3 clearly shows that our method is capable
of giving very high precision on its output CUIs (92.1% precision with
38.6% recall at best F-measure). On the other hand, MetaMap and co-
sine similarity are never so precise at any reasonable recall level, al-
though cosine similarity overall did better than MetaMap. Many mistakes
were made by MetaMap because sometimes it would over-approximate
terms—for example, it would match “pre renal azotemia” to “renal
azotaemia,” instead of matching it to “prerenal azotemia,” while some-
times it would fail to approximate—for example, it would not normalize
“arcus senilus” to “arcus senilis.” Our method being a learning method
avoids these types of mistakes. While it learns good patterns from UMLS
to approximate (e.g., when to change “us” to “is”), it avoids patterns

that over-approximate (e.g., a pattern that drops “pre”) because such
patterns will either have no positive example in the training data or will
have several negative examples and hence will get a very low score.

Cosine similarity based method made many mistakes because it is
not discriminative enough to know which words are important and which
are not. For example, it incorrectly matched “type 2 insulin dependent di-
abetes mellitus” to “type 2 diabetes mellitus non insulin dependent”
with a very high confidence because several words match between the
two terms, but it ignored the importance of the word “non”, which does
not match. Note that because “non” is a very common token in clinical
terms, using TF-IDF would have only further lowered its importance. The
method similarly matched “chronic headaches” to “chronic cluster head-
aches” and “pre renal azotemia” to “renal azotemia,” etc. Our proposed
method avoids such mistakes because of the reasons pointed out in the
last paragraph. The cosine similarity method, however, correctly matches
terms when they differ in only word order—for example, it correctly
matches “cholesterol embolus retinal” to “cholesterol retinal embolus”
but our proposed method fails to do so because the conversion between
these two terms is not a commonly encountered variation pattern. In fu-
ture, one may consider combining the scores of cosine similarity and
learned patterns to develop a hybrid approach.

While the precision of our method for output CUI is good, its recall
is low. But we want to point out that it misses normalizing many of the
mentions (resulting in low recall) because normalizing those mentions
would require a thorough semantic analysis and/or use of a compre-
hensive medical knowledge base. For example, in the dataset the
mention “neoplastic pleural thickening” should normalize to “tumor of
pleura” and the mention “inability to void” should normalize to “diffi-
culty passing urine,” but these types of normalizations are beyond
character-based edits and hence our method, as well as MetaMap
and the cosine similarity method, fail on them.

While Table 2 showed results when the terms that exactly matched
in UMLS were first excluded, Table 3 shows results on the test dataset
when all the terms are included (total 7997 mentions and 1930 of
them CUI-less) in order to give an idea of the relative contribution of
normalization methods over exact matching. The first three rows in
Table 3 show results when exact matching with UMLS, exact matching
with the training and development dataset (shown as TD in Table 3),
and their combination (resolving conflicts in favor of TD) are used for
normalization. It may be noted that the precision for output CUIs is not
100% with exact matching because of certain amount of ambiguity
and some inconsistencies in the dataset. In case a term exactly
matched descriptions of multiple CUIs in UMLS, then only the first
match was given as the output. Given that there is no confidence
score associated with exact matching, there is no threshold to vary,

Table 2: Results comparing performances of the proposed method that uses learned patterns (LP), the method based on cosine similar-
ity (CS), and MetaMap (MM) on different datasets of the disease and disorder mention normalization task of SemEval 2014 Task 7B.

Dataset (mentions, CUIs) Accuracy
(CUIþ CUI-less)

Best
F-measure (CUI)

Precision at best
F-measure (CUI)

Recall at best
F-measure (CUI)

LP CS MM LP CS MM LP CS MM LP CS MM

Training and dev. (4823, 1584) 69.4 38.4 58.3 32.2 24.8 18.5 81.9 32.6 29.7 20.0 20.0 13.5

Test (2777, 992) 68.6 31.1 58.4 44.4 31.5 18.8 86.1 45.2 44.4 29.9 24.2 11.9

Test-exclude(1075, 570) 64.7 44.6 41.9 54.4 38.1 19.4 92.1 70.3 38.0 38.6 26.1 13.0

All the numbers are percentages. From each of the datasets, only mentions with no exact matches in the UMLS were used to obtain the results. The
results shown in the last row were obtained after excluding the mentions in the test dataset that exactly matched mentions in the training and develop-
ment dataset. The proposed method was trained using only UMLS and the “training and development” dataset was not actually used for training.
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hence for an exact matching system there is only one F-measure pos-
sible which is shown under the column of best F-measure in Table 3.

Rows 4 and 5 in Table 3 show the results when our method, cosine
similarity method, and MetaMap are separately used for normalization in
cases when exact matching fails. As can be seen (comparing row 4
with row 1 and comparing row 5 with row 3), our method improves ac-
curacies over exact matching while MetaMap and cosine similarity, in
fact, lowers the accuracies. This is mainly because those two methods
often overly approximate many CUI-less terms and thus end up assign-
ing them CUIs. When considering the output CUIs, our method improved
recall by large amount without much affecting the precision, but
MetaMap and cosine similarity lowered precision while improving recall.

While our method learned patterns from all the available disease
and disorder semantic type terms in UMLS, the method can also learn
most of the patterns from a smaller set. Figure 4 shows a learning
curve in which we increase the percent of randomly selected UMLS
concepts used to learn patterns and measure the best F-measure ob-
tained on normalization task using the same test dataset (last row of

Table 2). As can be seen, the curve mostly flattens out after around
20% of UMLS concepts showing that the method does not necessarily
need the entire UMLS to learn normalization rules. This is because the
most common variation patterns for clinical terms are also likely to be
present in a smaller subset from which the method can learn them.

In addition to learning normalization rules from a resource like UMLS,
our method can also learn normalization rules from a training data of
terms found in clinical text and their gold-standard normalized forms.
The procedure will be exactly the same, except that it will also consider
the terms in the training data and their gold-standard normalized forms
for generating edit distance patterns. This will enable the method to learn
and adapt to idiosyncrasies specific to the particular genre of the training
data or specific to the medical center from where the training data was
gathered. This will also enable it to learn common patterns of misspell-
ings if present in the training data which it otherwise cannot learn just
from UMLS. However, when we used our method to also learn normali-
zation rules from the training and development data of SemEval 2014
Task 7 in addition to learning them from UMLS, there was almost no im-
pact on the results. This was because our method did not learn any new
types of variations of clinical terms from our training data that were not
already learned from UMLS. However, we want to point out that this find-
ing is specific to disease and disorder mentions present in the dataset
we used, but in general, the method may learn new types of variations
from training data which are not learnable from UMLS.

CONCLUSION
We presented a novel method for automatically learning rules for normal-
izing clinical terms. The rules are learned from known variations of clinical
terms from a resource like UMLS by computing edit distance patterns and
then generalizing those patterns. The process of generalization enables
the method to capture common variation patterns. The learned rules are
then validated within UMLS to estimate their accuracy and to prevent
over-generalization. The entire method does not need any human annota-
tion effort. We also presented an efficient algorithm for learning normaliza-
tion rules that can easily scale to the size of UMLS. Our method is
particularly good at capturing morphological and typographical variations.
It can also capture variations at the word level. However, because it does
not do any semantic analysis, it is not capable of normalizing terms based
on their meanings. Using a standard dataset of disease and disorder

Figure 3: Precision-recall curves for the normalization task
on the test dataset of SemEval 2014 Task 7B obtained using
the proposed method that uses learned edit distance pat-
terns, using the method based on cosine similarity, and us-
ing the MetaMap system.
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Table 3: Results on the test dataset of the disease and disorder mention normalization task of SemEval 2014 Task 7B.

System or Combination Accuracy
(CUIþ CUI-less)

Best F-measure
(CUI)

Precision at best
F-measure (CUI)

Recall at best
F-measure (CUI)

1 UMLS 81.53 83.90 90.71 78.05

2 TD 77.43 81.31 92.79 72.36

3 UMLSþ TD 86.16 88.11 92.58 84.06

4 UMLSþ patterns 83.02 86.52 90.42 82.94

UMLSþ cosine 70.00 84.19 86.51 82.00

UMLSþMetaMap 79.49 84.01 88.46 79.99

5 UMLSþ TDþ patterns 88.53 90.06 92.56 87.69

UMLSþ TDþ cosine 85.83 89.06 91.75 86.52

UMLSþ TDþMetaMap 85.47 87.91 90.71 85.28

All the numbers are percentages. The results show performances of exact matching in UMLS, exact matching in the training and development
dataset (TD), their combination, and when combined separately with the proposed method that uses learned patterns, with the method based on
cosine similarity, and with MetaMap.
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normalization task, we demonstrated that our method works very well and
outperforms the MetaMap system and a method based on cosine similarity
on this task. Our method is also general enough to learn normalization rules
for clinical terms of other semantic types besides diseases and disorders.
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12. Leaman R, Doğan RI, Lu Z. DNorm: disease name normalization with pair-
wise learning to rank. Bioinformatics. 2013;29(22):2909–2917.

13. Levenshtein VI. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady. Vol. 10, No. 8, 1966:707-710.

14. Rudniy A, Song M, Geller J. Mapping biological entities using the longest ap-
proximately common prefix method. BMC Bioinformatics. 2014;15(1):187.

15. Islamaj Dogan R, Lu Z. An inference method for disease name normaliza-
tion. In Proceedings of the AAAI 2012 AAAI Fall Symposium on Information
Retrieval and Knowledge Discovery in Biomedical Text. 2012:8–13.
November 2-4, Arlington, VA, USA.

16. Bilenko M, Mooney RJ. Adaptive duplicate detection using learnable string
similarity measures. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. 2003:39–48. August
24-27, Washington, DC, USA.

17. Pradhan S, Elhadad N, South BR, et al. Task 1: ShARe/CLEF eHealth evaluation
lab 2013. In Proceedings of the ShARe/CLEF Evaluation Lab 2013. 2013:1–6.

18. Pradhan S, Elhadad N, South BR, et al. Evaluating the state of the art in dis-
order recognition and normalization of the clinical narrative. JAMIA.
2015;22(1):143–154.

19. SNOMED CT. Systematized nomenclature of medicine-clinical terms.
International Health Terminology Standards Development Organization
International release, 2013.
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Figure 4: Learning curve for the best F-measure evaluating
the CUI output of the proposed method when it learns nor-
malization rules using increasing number of UMLS terms.
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